Arduino_Sensor_Nodes/sketch_nov30d/sketch_nov30d.ino

752 lines
23 KiB
C++

#ifndef ZIGBEE_MODE_ED
#error "Zigbee end device mode is not selected in Tools->Zigbee mode"
#endif
#include "Zigbee.h"
/* Zigbee occupancy sensor configuration */
#define OCCUPANCY_SENSOR_ENDPOINT_NUMBER 10
uint8_t button = BOOT_PIN;
uint8_t sensor_pin = 4;
ZigbeeOccupancySensor zbOccupancySensor = ZigbeeOccupancySensor(OCCUPANCY_SENSOR_ENDPOINT_NUMBER);
#include "DFRobot_C4001.h"
HardwareSerial RadarSerial(1);
DFRobot_C4001_UART radar(&RadarSerial, 9600, /*rx*/17, /*tx*/16); // ESP32-C6 pins
eMode_t currentMode = eExitMode; // 0=presence, 1=speed
unsigned long lastSpeedReport = 0;
bool lastOccupancy = false;
unsigned long occupancyStartTime = 0;
const unsigned long OCCUPANCY_TIMEOUT = 4; // 4 -> 2 seconds - adjust as needed
const unsigned long TRIGGER_DELAY = 10; // 10 -> 100 ms
// Define your custom SCL/SDA pins
#define I2C_SCL_PIN 20 // Change to your SCL pin
#define I2C_SDA_PIN 6 // Change to your SDA pin
// Create custom I2C instance
// TwoWire sharedI2C = TwoWire(0); // I2C0 (or TwoWire(1) for I2C1)
#define CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER 11
ZigbeeCarbonDioxideSensor zbCarbonDioxideSensor = ZigbeeCarbonDioxideSensor(CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER);
// #include <DFRobot_SCD4X.h>
// // DFRobot_SCD4X SCD4X(&Wire, /*i2cAddr = */SCD4X_I2C_ADDR);
// // SCD41 with custom I2C
// DFRobot_SCD4X SCD4X(&sharedI2C, SCD4X_I2C_ADDR);
#include <Arduino.h>
#include <SensirionI2cScd4x.h>
#include <Wire.h>
SensirionI2cScd4x scd41;
#define TEMP_SENSOR_ENDPOINT_NUMBER 12
ZigbeeTempSensor zbTempSensor_SCD4X = ZigbeeTempSensor(TEMP_SENSOR_ENDPOINT_NUMBER);
// --- BME680 Settings ---
#include <bme68xLibrary.h>
Bme68x bme;
// TwoWire BME68X_I2C = TwoWire(0); // I2C0 (or TwoWire(1) for I2C1)
// #include <DFRobot_BME680.h> // BME680 library
// DFRobot_BME680_I2C bme680(0x76); // 0x76
// #include <Adafruit_Sensor.h>
// #include "Adafruit_BME680.h"
// Adafruit_BME680 bme680;
unsigned long bme_report_time = millis();
#define TEMP_SENSOR_ENDPOINT_NUMBER 13
ZigbeeTempSensor zbTempSensor_BME68X = ZigbeeTempSensor(TEMP_SENSOR_ENDPOINT_NUMBER);
#define ANALOG_DEVICE_ENDPOINT_NUMBER 14
ZigbeeAnalog zbAnalogDevice_BME68X = ZigbeeAnalog(ANALOG_DEVICE_ENDPOINT_NUMBER);
// --- T6713 Settings ---
#define T6713_ADDR 0x15
// T6713 Register Addresses (Modbus)
#define T6713_REG_ABC_LOGIC 0x03EE
#define T6713_REG_STATUS 0x138A
unsigned long t6713_report_time = millis();
#define CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER_T6713 15
ZigbeeCarbonDioxideSensor zbCarbonDioxideSensor_T6713 = ZigbeeCarbonDioxideSensor(CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER_T6713);
void setPresenceMode() {
radar.setSensorMode(eExitMode);
currentMode = eExitMode;
Serial.println("Switched to PRESENCE mode");
// Presence mode settings from sample
// radar.setDetectionRange(30, 1000, 1000); // min,max,trig (cm)
// radar.setTrigSensitivity(1);
// radar.setKeepSensitivity(2);
// radar.setDelay(100, 4); // trig,keep
sSensorStatus_t data;
data = radar.getStatus();
// 0 stop 1 start
Serial.print("work status = ");
Serial.println(data.workStatus);
// 0 is exist 1 speed
Serial.print("work mode = ");
Serial.println(data.workMode);
// 0 no init 1 init success
Serial.print("init status = ");
Serial.println(data.initStatus);
Serial.println();
/*
* min Detection range Minimum distance, unit cm, range 0.3~25m (30~2500), not exceeding max, otherwise the function is abnormal.
* max Detection range Maximum distance, unit cm, range 2.4~25m (240~2500)
* trig Detection range Maximum distance, unit cm, default trig = max
*/
if(radar.setDetectionRange(/*min*/30, /*max*/500, /*trig*/500)){
Serial.println("set detection range successfully!");
}
// set trigger sensitivity 0 - 9
if(radar.setTrigSensitivity(8)){
Serial.println("set trig sensitivity successfully!");
}
// set keep sensitivity 0 - 9
if(radar.setKeepSensitivity(8)){
Serial.println("set keep sensitivity successfully!");
}
/*
* trig Trigger delay, unit 0.01s, range 0~2s (0~200)
* keep Maintain the detection timeout, unit 0.5s, range 2~1500 seconds (4~3000)
*/
if(radar.setDelay(/*trig*/TRIGGER_DELAY, /*keep*/OCCUPANCY_TIMEOUT)){
Serial.println("set delay successfully!");
}
// get confige params
Serial.print("trig sensitivity = ");
Serial.println(radar.getTrigSensitivity());
Serial.print("keep sensitivity = ");
Serial.println(radar.getKeepSensitivity());
Serial.print("min range = ");
Serial.println(radar.getMinRange());
Serial.print("max range = ");
Serial.println(radar.getMaxRange());
Serial.print("trig range = ");
Serial.println(radar.getTrigRange());
Serial.print("keep time = ");
Serial.println(radar.getKeepTimerout());
Serial.print("trig delay = ");
Serial.println(radar.getTrigDelay());
}
void setSpeedMode() {
radar.setSensorMode(eSpeedMode);
currentMode = eSpeedMode;
Serial.println("Switched to SPEED mode");
// Speed mode settings from sample
// radar.setDetectThres(11, 1200, 10); // min,max,thres (cm)
// radar.setFrettingDetection(eON);
sSensorStatus_t data;
data = radar.getStatus();
// 0 stop 1 start
Serial.print("work status = ");
Serial.println(data.workStatus);
// 0 is exist 1 speed
Serial.print("work mode = ");
Serial.println(data.workMode);
// 0 no init 1 init success
Serial.print("init status = ");
Serial.println(data.initStatus);
Serial.println();
/*
* min Detection range Minimum distance, unit cm, range 0.3~20m (30~2500), not exceeding max, otherwise the function is abnormal.
* max Detection range Maximum distance, unit cm, range 2.4~20m (240~2500)
* thres Target detection threshold, dimensionless unit 0.1, range 0~6553.5 (0~65535)
*/
if (radar.setDetectThres(/*min*/ 11, /*max*/ 1200, /*thres*/ 10)) {
Serial.println("set detect threshold successfully");
}
// set Fretting Detection
radar.setFrettingDetection(eON);
// get confige params
Serial.print("min range = ");
Serial.println(radar.getTMinRange());
Serial.print("max range = ");
Serial.println(radar.getTMaxRange());
Serial.print("threshold range = ");
Serial.println(radar.getThresRange());
Serial.print("fretting detection = ");
Serial.println(radar.getFrettingDetection());
}
void handleSerialCommands() {
while (Serial.available()) {
char cmd = Serial.read();
if (cmd == 'P' || cmd == 'p') {
setPresenceMode();
} else if (cmd == 'S' || cmd == 's') {
setSpeedMode();
}
}
}
void setup() {
Serial.begin(115200);
while (!Serial);
RadarSerial.begin(9600, SERIAL_8N1, 17, 16); // C4001 UART (RX=16, TX=17)
while (!radar.begin()) {
Serial.println("NO Device found!");
delay(1000);
}
Serial.println("C4001 connected!");
// Start in presence mode
setPresenceMode();
Serial.println("Send 'P' for presence, 'S' for speed mode");
// Optional: set Zigbee device name and model
zbOccupancySensor.setManufacturerAndModel("Espressif", "ZigbeeOccupancyPIRSensor_Node17");
zbOccupancySensor.setPowerSource(ZB_POWER_SOURCE_BATTERY, 100, 35);
// Add endpoint to Zigbee Core
Zigbee.addEndpoint(&zbOccupancySensor);
// Initialize custom I2C with YOUR pins
// SCD41_I2C.begin(SCD41_SDA_PIN, SCD41_SCL_PIN, 100000); // 100kHz standard
// Initialize SHARED I2C bus ONCE
// sharedI2C.begin(I2C_SDA_PIN, I2C_SCL_PIN, 100000);
Wire.begin(I2C_SDA_PIN, I2C_SCL_PIN);
scd41.begin(Wire, SCD41_I2C_ADDR_62);
// while( !SCD4X.begin() ){
// Serial.println("Communication with device failed, please check connection");
// delay(3000);
// }
scd41.stopPeriodicMeasurement();
Serial.println("SCD4x: Begin ok!");
scd41.startPeriodicMeasurement();
// SCD4X.setTempComp(4.0);
// float temp = 0;
// temp = SCD4X.getTempComp();
// Serial.print("The current temperature compensation value : ");
// Serial.print(temp);
// Serial.println(" C");
// SCD4X.setSensorAltitude(540);
// uint16_t altitude = 0;
// altitude = SCD4X.getSensorAltitude();
// Serial.print("Set the current environment altitude : ");
// Serial.print(altitude);
// Serial.println(" m");
// SCD4X.enablePeriodMeasure(SCD4X_START_PERIODIC_MEASURE);
zbCarbonDioxideSensor.setManufacturerAndModel("Espressif", "ZigbeeOccupancyPIRSensor_Node17");
// Set minimum and maximum carbon dioxide measurement value in ppm
zbCarbonDioxideSensor.setMinMaxValue(0, 1500);
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbCarbonDioxideSensor);
// Set minimum and maximum temperature measurement value (10-50°C is default range for chip temperature measurement)
zbTempSensor_SCD4X.setMinMaxValue(10, 50);
// Optional: Set tolerance for temperature measurement in °C (lowest possible value is 0.01°C)
zbTempSensor_SCD4X.setTolerance(1);
// Optional: Time cluster configuration (default params, as this device will revieve time from coordinator)
// zbTempSensor.addTimeCluster();
// Add humidity cluster to the temperature sensor device with min, max and tolerance values
zbTempSensor_SCD4X.addHumiditySensor(0, 100, 1);
// Add endpoint to Zigbee Core
Zigbee.addEndpoint(&zbTempSensor_SCD4X);
Serial.println("Connecting to BME680...");
// // Init BME680
// if (bme680.begin(sharedI2C) != 0) {
// Serial.println("BME680 init failed!");
// } else {
// Serial.println("BME680 ready!");
// }
// Wire.begin(SCD41_SDA_PIN, SCD41_SCL_PIN);
// Wire.setClock(100000); // Set I2C clock speed to 100kHz
// // Initialize the BME680
// bme.begin(BME68X_I2C_ADDR_HIGH, Wire); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
// bme.begin(BME68X_I2C_ADDR_HIGH, &BME68X_I2C); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
// bme680.begin()
// // Set up the BME680
// // bme.setGasStatus(BME680_ENABLE_GAS_MEAS);
// // bme.setOversampling(T2, OS_2X);
// // bme.setOversampling(T1, OS_16X);
// // bme.setOversampling(H1, OS_2X);
// // bme.setFilter(FILTER_SIZE_3);
// // bme.setGasSettings(320, 25, 0x4, 130, 410, 4, 0x01, 0x10, 0);
// if(bme.checkStatus())
// {
// if (bme.checkStatus() == BME68X_ERROR)
// {
// Serial.println("Sensor error:" + bme.statusString());
// return;
// }
// else if (bme.checkStatus() == BME68X_WARNING)
// {
// Serial.println("Sensor Warning:" + bme.statusString());
// }
// }
// /* Set the default configuration for temperature, pressure and humidity */
// bme.setTPH();
// /* Set the heater configuration to 300 deg C for 100ms for Forced mode */
// bme.setHeaterProf(300, 100);
// bme68xData data;
// bme.setOpMode(BME68X_FORCED_MODE);
// Note the syntax: .begin(Address, TwoWirePointer)
// if (!bme680.begin(0x77, &sharedI2C)) {
// Serial.println("BME680 not found at 0x77, trying 0x76...");
// if (!bme680.begin(0x76, &sharedI2C)) {
// Serial.println("BME680 Init Failed! Check wiring.");
// while (1);
// }
// }
// Serial.println("BME680 initialized via TwoWire.");
// // BME680 Settings
// bme680.setTemperatureOversampling(BME680_OS_8X);
// bme680.setHumidityOversampling(BME680_OS_2X);
// bme680.setPressureOversampling(BME680_OS_4X);
// bme680.setIIRFilterSize(BME680_FILTER_SIZE_3);
// bme680.setGasHeater(320, 150);
bme.begin(BME68X_I2C_ADDR_HIGH, Wire); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
/* Set the default configuration for temperature, pressure and humidity */
// setTPH(uint8_t os_temp, uint8_t os_pres, uint8_t os_hum); BME68X_OS_NONE, BME68X_OS_1X, BME68X_OS_2X, BME68X_OS_4X, BME68X_OS_8X, BME68X_OS_16X
bme.setTPH(BME68X_OS_8X, BME68X_OS_2X, BME68X_OS_8X);
/* Set the heater configuration to 300 deg C for 100ms for Forced mode */
bme.setHeaterProf(300, 100);
bme68xData data;
bme.setOpMode(BME68X_FORCED_MODE);
zbTempSensor_BME68X.setMinMaxValue(-20, 80);
zbTempSensor_BME68X.setTolerance(1);
zbTempSensor_BME68X.addHumiditySensor(0, 100, 1);
Zigbee.addEndpoint(&zbTempSensor_BME68X);
// Set analog resolution to 10 bits
// analogReadResolution(10);
// Add analog clusters to Zigbee Analog according your needs
zbAnalogDevice_BME68X.addAnalogInput();
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbAnalogDevice_BME68X);
// TRUE = Normal Home/Office use
// FALSE = Greenhouse / Constantly occupied
configureT6713(true);
// Set minimum and maximum carbon dioxide measurement value in ppm
zbCarbonDioxideSensor_T6713.setMinMaxValue(0, 1500);
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbCarbonDioxideSensor_T6713);
Serial.println("Starting Zigbee...");
// When all EPs are registered, start Zigbee in End Device mode
esp_zb_cfg_t zigbeeConfig = ZIGBEE_DEFAULT_ED_CONFIG();
// Increase keep-alive to 5 seconds (default is often 3000ms)
zigbeeConfig.nwk_cfg.zed_cfg.keep_alive = 5000;
// zigbeeConfig.nwk_cfg.zed_cfg.ed_timeout = ESP_ZB_ED_AGING_TIMEOUT_256MIN; // 4 hours; How long the parent remembers this device.
// 1. Our custom config (zigbeeConfig)
// 2. false = Do NOT erase NVS (keep network credentials)
// 3. true = Start automatically (optional, defaults to true)
if (!Zigbee.begin(&zigbeeConfig, false)) {
Serial.println("Zigbee failed to start!");
Serial.println("Rebooting...");
ESP.restart();
} else {
Serial.println("Zigbee started successfully!");
}
Serial.println("Connecting to network");
while (!Zigbee.connected()) {
Serial.print(".");
delay(100);
}
Serial.println();
// Set reporting interval for carbon dioxide measurement to be done every 30 seconds, must be called after Zigbee.begin()
// min_interval and max_interval in seconds, delta (carbon dioxide change in ppm)
// if min = 1 and max = 0, reporting is sent only when carbon dioxide changes by delta
// if min = 0 and max = 10, reporting is sent every 10 seconds or when carbon dioxide changes by delta
// if min = 0, max = 10 and delta = 0, reporting is sent every 10 seconds regardless of delta change
zbCarbonDioxideSensor.setReporting(0, 30, 0);
zbTempSensor_SCD4X.setReporting(1, 0, 1);
zbTempSensor_BME68X.setReporting(1, 0, 1);
// zbAnalogDevice.setAnalogInputReporting(0, 30, 10); // report every 30 seconds if value changes by 10
}
void loop() {
handleSerialCommands();
// // Remove if (radar.available()) - just read directly
// sSensorStatus_t status = radar.getStatus(); // Always safe to call
// Serial.print("Status: work=");
// Serial.print(status.workStatus);
// Serial.print(", mode=");
// Serial.print(status.workMode);
// Serial.print(", init=");
// Serial.println(status.initStatus);
if (currentMode == eExitMode) {
// PRESENCE MODE
// static bool occupancy = false;
// bool occupancyNow = radar.motionDetection();
// Serial.println(occupancyNow);
// // if (radar.motionDetection() == 1 && !occupancy) {
// if (occupancyNow != lastOccupancy) {
// Serial.println("MOTION DETECTED");
// zbOccupancySensor.setOccupancy(occupancyNow);
// zbOccupancySensor.report();
// // occupancy = true;
// lastOccupancy = occupancyNow;
// // } else if (radar.motionDetection() == 0 && occupancy) {
// // } else if (radar.motionDetection() == 0) {
// // Serial.println("MOTION ENDED");
// // zbOccupancySensor.setOccupancy(false);
// // zbOccupancySensor.report();
// // occupancy = false;
// }
// PRESENCE MODE - proper state machine
bool motionNow = radar.motionDetection();
// Serial.println(motionNow);
// Serial.println(lastOccupancy);
// Serial.println(millis() - occupancyStartTime);
if (motionNow && !lastOccupancy) {
// Motion STARTED → Set occupancy ON
Serial.println("MOTION DETECTED → OCCUPANCY ON");
lastOccupancy = true;
occupancyStartTime = millis();
zbOccupancySensor.setOccupancy(true);
zbOccupancySensor.report();
} else if (motionNow && lastOccupancy) {
// Motion ENDED → Start timeout timer
// Serial.println("Motion still present → timeout reset");
occupancyStartTime = millis();
} else if (!motionNow && lastOccupancy && (millis() - occupancyStartTime > OCCUPANCY_TIMEOUT*1000/2)) {
// TIMEOUT → Clear occupancy
Serial.println("OCCUPANCY TIMEOUT → OFF");
lastOccupancy = false;
zbOccupancySensor.setOccupancy(false);
zbOccupancySensor.report();
} else if (!motionNow && lastOccupancy) {
// Motion ENDED → Start timeout timer
// Serial.println("Motion ended → timeout started");
// occupancyStartTime = millis();
}
} else if (currentMode == eSpeedMode) {
// SPEED MODE
Serial.print("Targets: ");
Serial.print(radar.getTargetNumber());
Serial.print(" | Speed: ");
Serial.print(radar.getTargetSpeed(), 2);
Serial.print(" m/s | Range: ");
Serial.print(radar.getTargetRange(), 2);
Serial.print(" m | Energy: ");
Serial.println(radar.getTargetEnergy());
}
// --- Read SCD41 ---
uint16_t co2_scd = 0;
float temperature_scd = 0.0f;
float humidity_scd = 0.0f;
bool scdReady = false;
uint16_t error = scd41.readMeasurement(co2_scd, temperature_scd, humidity_scd);
if (error == 0 && co2_scd != 0) {
scdReady = true;
}
if (scdReady) {
Serial.print("[SCD41] CO2: "); Serial.print(co2_scd); Serial.print(" ppm");
Serial.print(" | Temp: "); Serial.print(temperature_scd); Serial.print(" C");
Serial.print(" | Hum: "); Serial.print(humidity_scd); Serial.println(" %");
zbCarbonDioxideSensor.setCarbonDioxide(co2_scd);
zbCarbonDioxideSensor.report();
// Update temperature and humidity values in Temperature sensor EP
zbTempSensor_SCD4X.setTemperature(temperature_scd);
zbTempSensor_SCD4X.setHumidity(humidity_scd);
// Report temperature and humidity values
zbTempSensor_SCD4X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
// Serial.printf("Reported temperature: %.2f°C, Humidity: %.2f%%\r\n", temperature, humidity);
// Serial.print("SCD41 reported.");
}
// else {
// Serial.println("[SCD41] Waiting for measurement...");
// }
// if(SCD4X.getDataReadyStatus()) {
// DFRobot_SCD4X::sSensorMeasurement_t data;
// SCD4X.readMeasurement(&data);
// Serial.print("Carbon dioxide concentration : ");
// Serial.print(data.CO2ppm);
// Serial.println(" ppm");
// Serial.print("Environment temperature : ");
// Serial.print(data.temp);
// Serial.println(" C");
// Serial.print("Relative humidity : ");
// Serial.print(data.humidity);
// Serial.println(" RH");
// Serial.println();
// zbCarbonDioxideSensor.setCarbonDioxide(data.CO2ppm);
// zbCarbonDioxideSensor.report();
// // Update temperature and humidity values in Temperature sensor EP
// zbTempSensor_SCD4X.setTemperature(data.temp);
// zbTempSensor_SCD4X.setHumidity(data.humidity);
// // Report temperature and humidity values
// zbTempSensor_SCD4X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
// // Serial.printf("Reported temperature: %.2f°C, Humidity: %.2f%%\r\n", temperature, humidity);
// Serial.print("SCD41 reported.");
// }
// Serial.println("---------------------------");
float bme_temperature(NAN), bme_humidity(NAN), bme_pressure(NAN), bme_gasResistance(NAN);
bme68xData data;
bme.setOpMode(BME68X_FORCED_MODE);
delayMicroseconds(bme.getMeasDur());
// delay(bme.getMeasDur(BME68X_FORCED_MODE) / 1000 + 50);
if (bme.fetchData() && (millis() - bme_report_time > 5000)) {
bme.getData(data);
bme_temperature = data.temperature; // Temperature in °C
bme_humidity = data.humidity; // Humidity in %
bme_pressure = data.pressure; // Pressure in hPa
bme_gasResistance = data.gas_resistance; // Gas resistance in ohms
// errorCount = 0; // Reset error count on successful read
Serial.printf("[BME680] temperature: %.2f°C, Humidity: %.2f%%, Gas Resistance: %.2f ohms\r\n", bme_temperature, bme_humidity, bme_gasResistance);
zbTempSensor_BME68X.setTemperature(bme_temperature);
zbTempSensor_BME68X.setHumidity(bme_humidity);
// Report temperature and humidity values
zbTempSensor_BME68X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
zbAnalogDevice_BME68X.setAnalogInput(bme_gasResistance);
zbAnalogDevice_BME68X.reportAnalogInput();
// Serial.print("BME68X reported.");
bme_report_time = millis();
}
// else {
// Serial.println("BME680 -> Waiting...");
// }
// --- Read T6713 (CO2) ---
int co2_t6713 = readT6713();
if ((co2_t6713 >= 0) && (millis() - t6713_report_time > 5000)) {
Serial.print("T6713 | CO2: "); Serial.print(co2_t6713); Serial.println(" ppm");
zbCarbonDioxideSensor_T6713.setCarbonDioxide(co2_t6713);
zbCarbonDioxideSensor_T6713.report();
t6713_report_time = millis();
}
// else {
// Serial.println("T6713 | Read Error");
// }
delay(100);
}
// Helper function for T6713
int readT6713() {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04); // Function: Read Input Registers
Wire.write(0x13); // Address High
Wire.write(0x8B); // Address Low
Wire.write(0x00);
Wire.write(0x01); // Length (1 register)
if (Wire.endTransmission() != 0) return -1;
delay(10); // Processing delay
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() == 4) {
Wire.read(); Wire.read(); // Skip Func & Len
byte high = Wire.read();
byte low = Wire.read();
return (high << 8) | low;
}
return -1;
}
void configureT6713(bool enableABC) {
// 1. Wait for Sensor Warm-up (at least 500ms after power on, datasheet says much longer for accuracy)
delay(1000);
// 2. Check Status Register (Optional but good practice)
// We read register 0x138A (5002) to check for errors/warmup
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04);
Wire.write(0x13); Wire.write(0x8A); // Address 0x138A
Wire.write(0x00); Wire.write(0x01);
Wire.endTransmission();
delay(10);
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() == 4) {
Wire.read(); Wire.read(); // Func, Len
uint16_t status = (Wire.read() << 8) | Wire.read();
// Bit 3 is Warm-up mode. If 1, sensor is still warming up.
if (status & 0x08) {
Serial.println("T6713: Warming up...");
}
}
// 3. Configure ABC Logic (Automatic Background Calibration)
// Write to Register 0x03EE (1006). Value: 0xFF00 = Enable, 0x0000 = Disable
uint16_t abcValue = enableABC ? 0xFF00 : 0x0000;
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x05); // Function: Write Single Coil
Wire.write(highByte(T6713_REG_ABC_LOGIC));
Wire.write(lowByte(T6713_REG_ABC_LOGIC));
Wire.write(highByte(abcValue));
Wire.write(lowByte(abcValue));
byte error = Wire.endTransmission();
if (error == 0) {
Serial.print("T6713: ABC Logic set to ");
Serial.println(enableABC ? "ON" : "OFF");
} else {
Serial.println("T6713: Failed to set ABC Logic");
}
// 4. Wait for the write to "stick"
delay(100);
}