4: debugging flag
This commit is contained in:
parent
8d1b45ce73
commit
cfc74cc3f2
Binary file not shown.
146
app.py
146
app.py
|
|
@ -15,6 +15,24 @@ from config import Config
|
|||
from inference import InferenceWorker
|
||||
from manager import CameraManager
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
# 1. USER CONFIGURATION (Edit these values here)
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
# Enable verbose debug logs (True = verbose, False = quiet/crucial only)
|
||||
DEBUG_LOG = False
|
||||
|
||||
# Rate Limiting: How many seconds to wait between detections per camera
|
||||
DETECTION_INTERVAL = 10
|
||||
|
||||
# Frame Quality Threshold: Skip images with standard deviation lower than this.
|
||||
# - Low values (1-5) allow darker/low-contrast images (good for night).
|
||||
# - High values (20-40) filter out gray/blank screens but might skip valid dark images.
|
||||
# - Set to 0 to disable this check entirely.
|
||||
FRAME_STD_THRESHOLD = 5.0
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
|
||||
def _cfg(*names, default=None):
|
||||
"""Return first matching attribute from Config, else default."""
|
||||
|
|
@ -24,7 +42,8 @@ def _cfg(*names, default=None):
|
|||
return default
|
||||
|
||||
|
||||
LOG_LEVEL = _cfg("LOG_LEVEL", "LOGLEVEL", default=logging.INFO)
|
||||
# --- Logging setup ---
|
||||
LOG_LEVEL = logging.DEBUG if DEBUG_LOG else _cfg("LOG_LEVEL", "LOGLEVEL", default=logging.INFO)
|
||||
logging.basicConfig(
|
||||
level=LOG_LEVEL,
|
||||
format='%(asctime)s [%(levelname)s] %(message)s',
|
||||
|
|
@ -34,12 +53,12 @@ logger = logging.getLogger(__name__)
|
|||
|
||||
app = Flask(__name__)
|
||||
|
||||
# --- Initialize Components ---
|
||||
# --- Initialize components ---
|
||||
camera_manager = CameraManager()
|
||||
inference_worker = InferenceWorker()
|
||||
inference_worker = InferenceWorker(debug_log=DEBUG_LOG)
|
||||
inference_worker.start()
|
||||
|
||||
# --- MQTT Setup ---
|
||||
# --- MQTT setup ---
|
||||
mqtt_client = mqtt.Client()
|
||||
|
||||
MQTT_USERNAME = _cfg("MQTT_USERNAME", "MQTTUSERNAME", default=None)
|
||||
|
|
@ -59,7 +78,45 @@ except Exception as e:
|
|||
logger.error("Failed to connect to MQTT Broker: %s", e)
|
||||
|
||||
|
||||
# --- Helper Functions (UI Only) ---
|
||||
# --- Helpers ---
|
||||
_last_log = {}
|
||||
|
||||
def log_rl(level, key, msg, every_s=10):
|
||||
"""Rate-limited log. Use for noisy conditions."""
|
||||
now = time.time()
|
||||
last = _last_log.get(key, 0.0)
|
||||
if now - last >= every_s:
|
||||
_last_log[key] = now
|
||||
logger.log(level, msg)
|
||||
|
||||
|
||||
def log_debug(key, msg, every_s=0):
|
||||
"""Debug-only logging with optional rate limiting."""
|
||||
if not DEBUG_LOG:
|
||||
return
|
||||
if every_s and every_s > 0:
|
||||
log_rl(logging.DEBUG, key, msg, every_s=every_s)
|
||||
else:
|
||||
logger.debug(msg)
|
||||
|
||||
|
||||
def log_condition(camera_id: str, cond_key: str, msg: str, *, crucial=False,
|
||||
debug_level=logging.DEBUG, debug_every=5,
|
||||
nodebug_level=logging.WARNING, nodebug_every=60):
|
||||
"""Log conditions (skip reasons, degraded state) without spamming.
|
||||
|
||||
- If DEBUG_LOG=True -> frequent detailed logs.
|
||||
- If DEBUG_LOG=False -> only rate-limited warnings for crucial conditions.
|
||||
"""
|
||||
key = f"{camera_id}:{cond_key}"
|
||||
if DEBUG_LOG:
|
||||
log_rl(debug_level, key, msg, every_s=debug_every)
|
||||
return
|
||||
|
||||
if crucial:
|
||||
log_rl(nodebug_level, key, msg, every_s=nodebug_every)
|
||||
|
||||
|
||||
def crop_image_for_ui(image, roi_list, scaleX, scaleY):
|
||||
"""Helper for the /crop endpoint (UI preview only)."""
|
||||
cropped_images = []
|
||||
|
|
@ -89,6 +146,7 @@ def publish_detected_number(camera_id, detected_number, confidence=None):
|
|||
|
||||
try:
|
||||
mqtt_client.publish(topic, payload)
|
||||
# Keep this INFO even when debug is off: it's the primary business output.
|
||||
log_msg = f"Published to {topic}: {detected_number}"
|
||||
if confidence is not None:
|
||||
log_msg += f" (Conf: {confidence:.2f})"
|
||||
|
|
@ -97,28 +155,16 @@ def publish_detected_number(camera_id, detected_number, confidence=None):
|
|||
logger.error("MQTT Publish failed: %s", e)
|
||||
|
||||
|
||||
# --- Debug helpers ---
|
||||
_last_log = {}
|
||||
|
||||
def log_rl(level, key, msg, every_s=10):
|
||||
now = time.time()
|
||||
last = _last_log.get(key, 0.0)
|
||||
if now - last >= every_s:
|
||||
_last_log[key] = now
|
||||
logger.log(level, msg)
|
||||
|
||||
|
||||
# --- Main Processing Loop (Refactored) ---
|
||||
# --- Main processing loop ---
|
||||
last_processed_time = {}
|
||||
|
||||
def process_all_cameras():
|
||||
"""Revised loop with rate limiting + debug instrumentation."""
|
||||
DETECTION_INTERVAL = int(_cfg("DETECTION_INTERVAL", default=10))
|
||||
hb_last = 0.0
|
||||
|
||||
while True:
|
||||
try:
|
||||
# Heartbeat (proves loop is alive even when no publishes happen)
|
||||
# Heartbeat only in debug mode
|
||||
if DEBUG_LOG:
|
||||
now = time.time()
|
||||
if now - hb_last >= 5.0:
|
||||
hb_last = now
|
||||
|
|
@ -133,7 +179,7 @@ def process_all_cameras():
|
|||
getattr(inference_worker, "last_invoke_secs", "n/a"),
|
||||
)
|
||||
|
||||
# --- Part 1: Process Results ---
|
||||
# --- Part 1: process results ---
|
||||
while True:
|
||||
result = inference_worker.get_result()
|
||||
if not result:
|
||||
|
|
@ -141,11 +187,10 @@ def process_all_cameras():
|
|||
|
||||
cam_id = result.get('camera_id')
|
||||
|
||||
# End-to-end latency tracing
|
||||
task_ts = result.get("task_ts")
|
||||
if task_ts is not None:
|
||||
# Debug-only latency trace
|
||||
if DEBUG_LOG and result.get("task_ts") is not None:
|
||||
try:
|
||||
age = time.time() - float(task_ts)
|
||||
age = time.time() - float(result["task_ts"])
|
||||
logger.info(
|
||||
"Result cam=%s type=%s task_id=%s age_s=%.3f timing=%s",
|
||||
cam_id,
|
||||
|
|
@ -162,11 +207,20 @@ def process_all_cameras():
|
|||
conf = result.get('confidence')
|
||||
camera_manager.results[cam_id] = val
|
||||
publish_detected_number(cam_id, val, conf)
|
||||
|
||||
elif result.get('type') == 'error':
|
||||
msg = result.get('message', 'Unknown error')
|
||||
logger.warning("[%s] Detection skipped: %s", cam_id, msg)
|
||||
|
||||
# --- Part 2: Feed Frames ---
|
||||
# When debug is off, avoid spamming "Low confidence" messages.
|
||||
if DEBUG_LOG:
|
||||
logger.warning("[%s] Detection skipped: %s", cam_id, msg)
|
||||
else:
|
||||
# Crucial errors: rate-limited warnings.
|
||||
# Filter out "Low confidence" unless it's crucial for you.
|
||||
if not str(msg).lower().startswith("low confidence"):
|
||||
log_condition(cam_id, "detect_error", f"[{cam_id}] Detection skipped: {msg}", crucial=True)
|
||||
|
||||
# --- Part 2: feed frames ---
|
||||
camera_manager.load_roi_config()
|
||||
|
||||
for camera_id, camera_data in camera_manager.cameras.items():
|
||||
|
|
@ -177,45 +231,40 @@ def process_all_cameras():
|
|||
last_time = last_processed_time.get(camera_id, 0.0)
|
||||
|
||||
if current_time - last_time < DETECTION_INTERVAL:
|
||||
log_rl(
|
||||
logging.DEBUG,
|
||||
f"{camera_id}:rate",
|
||||
f"[{camera_id}] skip: rate limit ({current_time - last_time:.2f}s<{DETECTION_INTERVAL}s)",
|
||||
every_s=30,
|
||||
)
|
||||
log_debug(f"{camera_id}:rate", f"[{camera_id}] skip: rate limit", every_s=30)
|
||||
continue
|
||||
|
||||
stream = camera_data.get("stream")
|
||||
if not stream:
|
||||
log_rl(logging.WARNING, f"{camera_id}:nostream", f"[{camera_id}] skip: no stream", every_s=10)
|
||||
log_condition(camera_id, "nostream", f"[{camera_id}] skip: no stream", crucial=True)
|
||||
continue
|
||||
|
||||
# Warmup check
|
||||
start_time = getattr(stream, "start_time", getattr(stream, "starttime", None))
|
||||
if start_time is not None and (current_time - start_time) < 5:
|
||||
log_rl(logging.DEBUG, f"{camera_id}:warmup", f"[{camera_id}] skip: warmup", every_s=10)
|
||||
log_debug(f"{camera_id}:warmup", f"[{camera_id}] skip: warmup", every_s=10)
|
||||
continue
|
||||
|
||||
frame = stream.read()
|
||||
if frame is None:
|
||||
log_rl(logging.WARNING, f"{camera_id}:noframe", f"[{camera_id}] skip: frame is None", every_s=5)
|
||||
log_condition(camera_id, "noframe", f"[{camera_id}] skip: frame is None", crucial=True)
|
||||
continue
|
||||
|
||||
# STD Check
|
||||
frame_std = float(np.std(frame))
|
||||
if frame_std < 5:
|
||||
log_rl(
|
||||
logging.INFO,
|
||||
f"{camera_id}:lowstd",
|
||||
f"[{camera_id}] skip: low frame std={frame_std:.2f} (<10) (disturbed/blank/frozen?)",
|
||||
every_s=5,
|
||||
if frame_std < FRAME_STD_THRESHOLD:
|
||||
log_condition(
|
||||
camera_id,
|
||||
"lowstd",
|
||||
f"[{camera_id}] skip: low frame std={frame_std:.2f} (<{FRAME_STD_THRESHOLD})",
|
||||
crucial=True,
|
||||
debug_every=5,
|
||||
nodebug_every=60,
|
||||
)
|
||||
mqtt_client.publish(f"{Config.MQTT_TOPIC}/{camera_id}/status", "disturbed")
|
||||
|
||||
continue
|
||||
|
||||
roi_list = camera_manager.rois.get(camera_id, [])
|
||||
if not roi_list:
|
||||
log_rl(logging.WARNING, f"{camera_id}:norois", f"[{camera_id}] skip: no ROIs", every_s=30)
|
||||
log_condition(camera_id, "norois", f"[{camera_id}] skip: no ROIs configured", crucial=True)
|
||||
continue
|
||||
|
||||
inference_worker.add_task(camera_id, roi_list, frame, frame_std=frame_std)
|
||||
|
|
@ -229,7 +278,7 @@ def process_all_cameras():
|
|||
time.sleep(5)
|
||||
|
||||
|
||||
# --- Flask Routes ---
|
||||
# --- Flask routes ---
|
||||
@app.route('/')
|
||||
def index():
|
||||
return render_template('index.html')
|
||||
|
|
@ -405,6 +454,7 @@ def detect_digits():
|
|||
if p['confidence'] < CONFIDENCE_THRESHOLD:
|
||||
msg = f"Digit {i} ('{p['digit']}') rejected: conf {p['confidence']:.2f} < {CONFIDENCE_THRESHOLD}"
|
||||
rejected_reasons.append(msg)
|
||||
if DEBUG_LOG:
|
||||
logger.warning("[Manual] %s", msg)
|
||||
else:
|
||||
valid_digits_str.append(p['digit'])
|
||||
|
|
@ -419,6 +469,7 @@ def detect_digits():
|
|||
|
||||
if not (MIN_VALUE <= final_number <= MAX_VALUE):
|
||||
msg = f"Value {final_number} out of range ({MIN_VALUE}-{MAX_VALUE})"
|
||||
if DEBUG_LOG:
|
||||
logger.warning("[Manual] %s", msg)
|
||||
return jsonify({'error': 'Value out of range', 'value': final_number}), 400
|
||||
|
||||
|
|
@ -448,7 +499,6 @@ def update_camera_config():
|
|||
return jsonify({"success": success})
|
||||
|
||||
|
||||
# --- Main ---
|
||||
if __name__ == '__main__':
|
||||
t = threading.Thread(target=process_all_cameras, daemon=True)
|
||||
t.start()
|
||||
|
|
|
|||
45
inference.py
45
inference.py
|
|
@ -9,8 +9,22 @@ import tflite_runtime.interpreter as tflite
|
|||
|
||||
from config import Config
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
# ------------------------------------------------------------------------------
|
||||
# 1. USER CONFIGURATION (Edit these values here)
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
# Minimum confidence (0-1) to accept a digit.
|
||||
# - Higher (0.85-0.90) reduces false positives like "1010" from noise.
|
||||
# - Lower (0.70-0.75) helps with weak/dark digits.
|
||||
CONFIDENCE_THRESHOLD = 0.1
|
||||
|
||||
# Minimum and Maximum expected values for the number.
|
||||
MIN_VALUE = 5
|
||||
MAX_VALUE = 100
|
||||
|
||||
# ------------------------------------------------------------------------------
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def _cfg(*names, default=None):
|
||||
for n in names:
|
||||
|
|
@ -20,7 +34,9 @@ def _cfg(*names, default=None):
|
|||
|
||||
|
||||
class InferenceWorker:
|
||||
def __init__(self):
|
||||
def __init__(self, debug_log: bool = False):
|
||||
self.debug_log = bool(debug_log)
|
||||
|
||||
self.input_queue = queue.Queue(maxsize=10)
|
||||
self.result_queue = queue.Queue()
|
||||
self.running = False
|
||||
|
|
@ -36,10 +52,10 @@ class InferenceWorker:
|
|||
self.processed_tasks = 0
|
||||
self.last_invoke_secs = None
|
||||
|
||||
# Validation thresholds
|
||||
self.CONFIDENCE_THRESHOLD = 0.10
|
||||
self.MIN_VALUE = 5
|
||||
self.MAX_VALUE = 100
|
||||
# Set thresholds from top-level variables
|
||||
self.CONFIDENCE_THRESHOLD = CONFIDENCE_THRESHOLD
|
||||
self.MIN_VALUE = MIN_VALUE
|
||||
self.MAX_VALUE = MAX_VALUE
|
||||
|
||||
self.load_model()
|
||||
|
||||
|
|
@ -55,6 +71,7 @@ class InferenceWorker:
|
|||
self.output_details = self.interpreter.get_output_details()
|
||||
|
||||
self.original_input_shape = self.input_details[0]['shape']
|
||||
if self.debug_log:
|
||||
logger.info("Model loaded. Default input shape: %s", self.original_input_shape)
|
||||
|
||||
except Exception as e:
|
||||
|
|
@ -101,11 +118,9 @@ class InferenceWorker:
|
|||
return None
|
||||
|
||||
def _put_result(self, d):
|
||||
"""Best-effort put so failures never go silent."""
|
||||
try:
|
||||
self.result_queue.put(d, block=False)
|
||||
except Exception:
|
||||
# Should be extremely rare; log + drop
|
||||
logger.exception("Failed to enqueue result")
|
||||
|
||||
def _worker_loop(self):
|
||||
|
|
@ -121,6 +136,7 @@ class InferenceWorker:
|
|||
task_id = task.get('task_id')
|
||||
task_ts = task.get('timestamp')
|
||||
|
||||
if self.debug_log:
|
||||
try:
|
||||
age_s = (time.time() - task_ts) if task_ts else None
|
||||
logger.info(
|
||||
|
|
@ -132,7 +148,10 @@ class InferenceWorker:
|
|||
len(rois) if rois else 0,
|
||||
self.input_queue.qsize(),
|
||||
)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
try:
|
||||
t0 = time.time()
|
||||
crops = self._crop_rois(frame, rois)
|
||||
t_crop = time.time()
|
||||
|
|
@ -213,6 +232,7 @@ class InferenceWorker:
|
|||
'task_ts': task_ts,
|
||||
'timing_s': {'crop': t_crop - t0, 'predict': t_pred - t_crop, 'total': t_pred - t0},
|
||||
})
|
||||
self.processed_tasks += 1
|
||||
else:
|
||||
self._put_result({
|
||||
'type': 'error',
|
||||
|
|
@ -224,8 +244,6 @@ class InferenceWorker:
|
|||
'timing_s': {'crop': t_crop - t0, 'predict': t_pred - t_crop, 'total': t_pred - t0},
|
||||
})
|
||||
|
||||
self.processed_tasks += 1
|
||||
|
||||
except Exception:
|
||||
logger.exception("Inference error cam=%s task_id=%s", cam_id, task_id)
|
||||
self._put_result({
|
||||
|
|
@ -275,7 +293,7 @@ class InferenceWorker:
|
|||
|
||||
input_tensor = np.array(batch_input)
|
||||
|
||||
# NOTE: Keeping original behavior (resize+allocate) but timing it.
|
||||
# Keep current behavior (resize+allocate per batch). Debug timing is optional.
|
||||
self.interpreter.resize_tensor_input(input_index, [num_images, target_h, target_w, 3])
|
||||
self.interpreter.allocate_tensors()
|
||||
|
||||
|
|
@ -284,7 +302,8 @@ class InferenceWorker:
|
|||
t0 = time.time()
|
||||
self.interpreter.invoke()
|
||||
self.last_invoke_secs = time.time() - t0
|
||||
if self.last_invoke_secs > 1.0:
|
||||
|
||||
if self.debug_log and self.last_invoke_secs and self.last_invoke_secs > 1.0:
|
||||
logger.warning("Slow invoke: %.3fs (batch=%d)", self.last_invoke_secs, num_images)
|
||||
|
||||
output_data = self.interpreter.get_tensor(output_index)
|
||||
|
|
@ -293,7 +312,7 @@ class InferenceWorker:
|
|||
for i in range(num_images):
|
||||
logits = output_data[i]
|
||||
|
||||
# More stable softmax
|
||||
# Numerically stable softmax
|
||||
logits = logits - np.max(logits)
|
||||
ex = np.exp(logits)
|
||||
denom = np.sum(ex)
|
||||
|
|
|
|||
Loading…
Reference in New Issue