Shelly configuration via web interface

https://kb.shelly.cloud/knowledge-base/shelly-plus-1pm-web-interface-guide

192.168.33.1

Id: A8032AB82968

bedroom: shellyplus1pm-a8032ab82968 → 192.168.178.53

top child room: shellyplus1pm-a8032abba0b0 → 192.168.178.54

living room: shellyplusi4-a8032ab1d7d0 → 192.168.178.55

bed room: shellyplusi4-a8032ab1c9e0 → 192.168.178.56

shellyrgbw2-E0AC83 → 192.168.178.76



 



 



 

FRITZ!Box 7530 GD

78302839617779115068



 

MQTT credentials:

192.168.178.32:1883 → 192.168.178.52:1883

note4

note4



 



 



 



 

https://shelly-api-docs.shelly.cloud/gen2/General/RPCChannels

shellyplus1pm-a8032ab82968/rpc

shellyplus1pm-a8032ab82968/events/rpc

shellyplusi4-a8032ab1d7d0/events/rpc

shellyplusi4-a8032ab1c9e0/events/rpc

shellyrgbw2-E0AC83/events/rpc


 


 

https://www.home-assistant.io/integrations/shelly/

Generation 2 devices use the values btn_down, btn_up, single_push, double_push and long_push as click_type.


 


 


 

http://192.168.178.53/rpc/Shelly.GetStatus


 

power consumption LED (green channel stuck at 100%; red LEDs not connected on one strip; in total ca. 250 LEDs):

green 100%: 7.7 W

green+blue 100%: 16.3 W

green+red 100%: 18.7 W

white = green+blue+red 100%: 26.4 W

green 100%+blue 50%+red 50%: 17.8 W

green 100%+blue 1%+red 1%: 9.7 W


 


 


 

nice automations:

https://community.home-assistant.io/t/shelly-plus-i4-wall-switch-example-automation/401625


 


 


 


 


 

example to send command to shell:

service: mqtt.publish

data:

topic: homeassistant/shellyplus1pm-fgfloodlights/rpc

payload: >-

{{ {‘id’: 1, ‘src’:‘homeassistant/shellyplus1pm-fgfloodlights/status’,

‘method’:‘Shelly.GetStatus’} | to_json }}


 


 


 

Shelly integration via MQTT

https://shelly-api-docs.shelly.cloud/gen2/ComponentsAndServices/Mqtt

<model> = shellyplus1pm


 


 

https://shelly-api-docs.shelly.cloud/gen1/#shelly1-1pm-mqtt

Shelly1/1PM: MQTT


 

Shelly1 and Shelly1PM uses the following topics, where <model> is either shelly1 or shelly1pm:


 

shellies/<model>-<deviceid>/relay/0 to report status: on, off or overpower (the latter only for Shelly1PM)

shellies/<model>-<deviceid>/relay/0/command accepts on, off or toggle and applies accordingly

shellies/<model>-<deviceid>/input/0 reports the state of the SW terminal

shellies/<model>-<deviceid>/longpush/0 reports longpush state as 0 (shortpush) or 1 (longpush)

shellies/<model>-<deviceid>/input_event/0 reports input event and event counter, e.g.: {"event":"S","event_cnt":2} see /status for details


 

Shelly1PM adds:


 

shellies/shelly1pm-<deviceid>/relay/0/power reports instantaneous power in Watts

shellies/shelly1pm-<deviceid>/relay/0/energy reports an incrementing energy counter in Watt-minute

shellies/shelly1pm-<deviceid>/temperature reports internal device temperature in °C

shellies/shelly1pm-<deviceid>/temperature_f reports internal device temperature in °F

shellies/shelly1pm-<deviceid>/overtemperature reports 1 when device has overheated, normally 0

shellies/shelly1pm-<deviceid>/temperature_status reports Normal, High, Very High

shellies/shelly1pm-<deviceid>/relay/0/overpower_value reports the value in Watts, on which an overpower condition is detected


 


 


 


 


 


 


 

https://community.home-assistant.io/t/shelly-gen-2-plus-and-pro-using-mqtt/347979/19

mqtt:

switch:

- name: "Garage: Heat pump switch"

state_topic: "garage-heat-pump-switch-pm/status/switch:0"

value_template: "{{ value_json.output }}"

state_on: true

state_off: false

command_topic: "garage-heat-pump-switch-pm/rpc"

payload_on: '{"id":1, "src": "homeassistant", "method": "Switch.Set", "params":{"id":0,"on":true}}'

payload_off: '{"id":1, "src": "homeassistant", "method": "Switch.Set", "params":{"id":0,"on":false}}'

optimistic: false

qos: 1

retain: false

sensor:

- name: "Garage: Heat pump switch temperature"

unique_id: 4ca71dd5-645d-48e5-a387-a655cc7dd42e

state_topic: "garage-heat-pump-switch-pm/status/switch:0"

value_template: "{{ value_json.temperature.tC }}"

unit_of_measurement: "°C"

device_class: temperature

 

- name: "Garage: Heat pump switch current power"

unique_id: 44f6d6de-be45-4697-8ff9-882fae91c6a2

state_topic: "garage-heat-pump-switch-pm/status/switch:0"

value_template: "{{ value_json.apower }}"

unit_of_measurement: "W"

device_class: power

 

- name: "Garage: Heat pump switch total power"

unique_id: 44f6d6de-be45-4697-8ff9-882fae91c6a1

state_topic: "garage-heat-pump-switch-pm/status/switch:0"

value_template: "{{ value_json.aenergy.total }}"

unit_of_measurement: "W"

device_class: power


 


 


 


 

https://community.openhab.org/t/shelly-plus-1pm-via-mqtt/139826

Hi folkes,
I am a bit inpatient and cannot waiting for the Shelly binding to cover the new devices and I read that due to the new ESP32 and new API, Shelly devices can now run cloud and MQTT in parallel. So if you start controlling your new devices (e.g. the Shelly Plus 1PM) via MQTT, you are not missing out on anything else. So here is my thing code for the Shelly Plus 1PM:

UID: mqtt:topic:5d0f79cab1:b0df524d88




 



 



 

https://sequr.be/blog/2020/10/mqtt-templates-for-shelly-devices/#mqtt-templates

## /sensors/room_x/lamp.yaml



 

# Input type

- platform: mqtt

name: Room X - lamp - input

expire_after: 86400

qos: 1

state_topic: shellies/shelly1pm-[SHELLY ID]/input_event/0

# Device temperature °C

- platform: mqtt

name: Room X - lamp - temperature

expire_after: 86400

qos: 1

device_class: temperature

unit_of_measurement: '°C'

icon: mdi:temperature-celcius

state_topic: shellies/shelly1pm-[SHELLY ID]/temperature

# Device temperature °F

- platform: mqtt

name: Room X - lamp - temperature F

expire_after: 86400

qos: 1

device_class: temperature

unit_of_measurement: '°F'

icon: mdi:temperature-fahrenheit

state_topic: shellies/shelly1pm-[SHELLY ID]/temperature_f

# Power consumption (live)

- platform: mqtt

name: Room X - lamp - power

expire_after: 86400

qos: 1

device_class: power

unit_of_measurement: 'W'

icon: mdi:lightning-bolt-outline

state_topic: shellies/shelly1pm-[SHELLY ID]/relay/0/power

# Power consumption (since reboot)

- platform: mqtt

name: Room X - lamp - energy

expire_after: 86400

qos: 1

device_class: energy

state_class: total_increasing

unit_of_measurement: 'Wh'

value_template: "{{ value | float / 60 }}"

icon: mdi:lightning-bolt

state_topic: shellies/shelly1pm-[SHELLY ID]/relay/0/energy

# Overpower

- platform: mqtt

name: Room X - lamp - overpower

expire_after: 86400

qos: 1

device_class: power

unit_of_measurement: 'W'

icon: mdi:flash-alert

state_topic: shellies/shelly1pm-[SHELLY ID]/overpower_value



 



 



 

rgbw2 via mqtt

https://usa.shelly.cloud/knowledge-base/shelly-rgbw2/

https://community.home-assistant.io/t/shelly-rgbw2-automations-mqtt/234564

https://cyan-automation.medium.com/setting-up-a-white-shelly-rgbw2-using-mqtt-in-home-assistant-d7996db6ce7d

shellies/shellyrgbw2-E0AC83/white/3/status

shellies/shellyrgbw2-E0AC83/color/0/status



 



 



 



 



 


 


 

Shelly integration via ESPHome

https://www.esphome-devices.com/devices/Shelly-Plus-1PM


 


 


 


 

Shelly firmware update

Via MQTT

https://community.home-assistant.io/t/shelly-firmware-updates/123123/2

in configuration.yaml, add the rest integration and configure like so:


 

rest_command:

update_shelly:

url: 'http://{{ shelly_ip }}/ota?update=true'


 


 

create a new automation, eg. shellyupdate.yaml that looks like this:


 

- alias: "Shelly New Firmware Notification"

id: 'snfn'

trigger:

platform: mqtt

topic: shellies/announce

condition:

condition: template

value_template: "{{ trigger.payload_json['new_fw'] == true }}"

action:

- service: persistent_notification.create

data_template:

title: "New Shelly Firmware Update Released. Update will be attempted."

message: Update will be attempted"

notification_id: "{{ trigger.payload_json['id'] }}"

- service: rest_command.update_shelly

data:

shelly_ip: "{{ trigger.payload_json['ip'] }}"

 

- alias: "Shelly New Firmware Notification Removal"

id: 'snfnr'

trigger:

platform: mqtt

topic: shellies/announce

condition:

condition: template

value_template: "{{ trigger.payload_json['new_fw'] == false }}"

action:

service: persistent_notification.dismiss

data_template:

notification_id: "{{ trigger.payload_json['id'] }}"


 


 


 

Via REST API

https://community.home-assistant.io/t/shelly-firmware-updates-using-shelly-integration-not-mqtt/323833

http://[IP-OF-SHELLY/ota?update=1 does the trick


 


 


 


 


 


 


 


 


 


 

Node Red

https://smarthome.university/home-assistant/node-red/


 

https://funprojects.blog/2020/03/23/home-assistant-with-node-red/


 


 


 


 


 


 

Deye Wechselrichter

Solarman?

See KeePassXC



 



 



 



 



 



 



 



 

Using Wemos Lolin ESP32 boards

C3 Mini

https://www.wemos.cc/en/latest/c3/c3_mini.html


 

https://www.fambach.net/d1-mini-esp8266-modul-2-3/

static const uint8_t LED_BUILTIN = 7;

#define BUILTIN_LED LED_BUILTIN // backward compatibility

static const uint8_t TX = 21;

static const uint8_t RX = 20;

static const uint8_t SDA = 8;

static const uint8_t SCL = 10;

static const uint8_t SS = 5;

static const uint8_t MOSI = 4;

static const uint8_t MISO = 3;

static const uint8_t SCK = 2;

static const uint8_t A0 = 0;

static const uint8_t A1 = 1;

static const uint8_t A2 = 2;

static const uint8_t A3 = 3;

static const uint8_t A4 = 4;

static const uint8_t A5 = 5;


 

Wifi funktioniert nicht → Wifi TX auf 8,5 dBm setzen:

WiFi.setTxPower(WIFI_POWER_8_5dBm);


 

Arduino:

Configure Board

Use lastest esp32 arduino package

Choose board LOLIN C3 MINI

Upload Code

Make C3 boards into Device Firmware Upgrade (DFU) mode.

Hold on Button 9

Press Button Reset

Release Button 9 When you hear the prompt tone on usb reconnection


 


 


 


 

Wemos S2 Pico

D:\”Home Assistant”\Python\myenv\Scripts\activate.bat

pip install esptool


 

Make S2 boards into Device Firmware Upgrade (DFU) mode.

 

Hold on Button 0

Press Button Reset

Release Button 0 When you hear the prompt tone on usb reconnection

Flash using esptool.py

esptool.py --port PORT_NAME erase_flash

esptool.py --port COM20 erase_flash

esptool.py --port PORT_NAME --baud 1000000 write_flash -z 0x1000 FIRMWARE.bin

esptool.py --port PORT_NAME --baud 1000000 write_flash -z 0x1000 FIRMWARE.bin


 


 

https://codeandlife.com/2022/02/25/using-ssd1306-oled-wemos-s2-pico-esp32-s2-board/


 


 

https://microcontrollerslab.com/oled-display-raspberry-pi-pico-micropython-tutorial/

SSD1306 OLED MicroPython Library

We will have to install the SSD1306 OLED library for MicroPython to continue with our project.

To successfully do that, open your Thonny IDE with your Raspberry Pi Pico plugged in your system. Go to Tools > Manage Packages. This will open up the Thonny Package Manager.



 

Search for “ssd1306” in the search bar by typing its name and clicking the button ‘Search on PyPI.’



 

From the following search results click on the one highlighted below: micropython-ssd1306



 

Install this library.


 


 


 


 


 


 


 

Home Assistant presence simulation

https://github.com/slashback100/presence_simulation


 


 


 


 

https://blog.jonsdocs.org.uk/2022/08/29/simulating-presence-with-home-assistant/


 

I created an toggle helper called input_boolean.holidaymode:

Go to Settings then Devices & Services

Click on the Helpers tab (in the web interace this will be at the top, on the Android app it's an icon at the bottom

Click create helper

Choose Toggle

Type a name (e.g., HolidayMode) and choose an icon (e.g., mdi:beach) and click Create

The list of helpers will now include input_boolean.holidaymode

As the automation stores the light it is going to change (switch on or off) in the "light to switch" variable, we need to create that.

Go to Settings then Devices & Services

Click on the Helpers tab (in the web interace this will be at the top, on the Android app it's an icon at the bottom

Click create helper

Choose Text

For name, type light_to_switch and leave the other options as their defaults

Click Create

The list of helpers will now include input_text.light_to_switch

Once we've created the light group we'll be referencing it by name in the automation.

Go to Settings then Devices & Services

Click on the Helpers tab (in the web interace this will be at the top, on the Android app it's an icon at the bottom

Click create helper

Choose Group (a circle with three dots in it)

When asked what type of group this is, choose Light group

Give your group a name (e.g., "Presence simulation lights") and choose the members to include in the group

Click Submit

In the helpers list you'll see a group called light.presence_simulation_lights - copy this name exactly as we'll need it in the automation

Create automation - random lights on

alias: "Holiday mode: Presence simulation"

trigger:

  - platform: time_pattern

    minutes: /30

condition:

  - condition: state

    entity_id: input_boolean.holidaymode

    state: "on"

  - condition: sun

    after: sunset

    after_offset: "-00:30:00"

  - condition: time

    before: "22:00:00"

action:

  - delay: 00:{{ '{:02}'.format(range(0,30) | random | int) }}:00

  - service: input_text.set_value

    data_template:

      entity_id: input_text.light_to_switch

      value: "{{ state_attr('light.presence_simulation_lights','entity_id') | random }}"

  - service: homeassistant.toggle

    data_template:

      entity_id: "{{states('input_text.light_to_switch')}}"

initial_state: true

hide_entity: false


 

Create automation - lights off at random bedtime

alias: "Holiday mode: Turning off all toggled lights"

description: ""

trigger:

  - platform: time

    at: "23:00:00"

condition:

  - condition: state

    entity_id: input_boolean.holidaymode

    state: "on"

action:

  - delay: 00:{{ range(15,59) | random | int }}:00

  - service: homeassistant.turn_off

    data: {}

    target:

      entity_id: light.presence_simulation_lights

initial_state: true

hide_entity: false

mode: single


 


 


 


 


 


 

https://blog.mornati.net/home-assistant-simple-presence-simulation-script



 

Add the following script in your scripts configuration file (ie scripts.yaml)

COPY

light_duration:

  mode: parallel 

  description: "Turns on a light for a while, and then turns it off"

  fields:

    light:

      description: "A specific light"

      example: "light.bedroom"

    duration:

      description: "How long the light should be on in minutes"

      example: "25"

  sequence:

    - service: homeassistant.turn_on

      data:

        entity_id: "{{ light }}"

    - delay: "{{ duration }}"

    - service: homeassistant.turn_off

      data:

        entity_id: "{{ light }}"


 

The automation will then start the script providing the correct parameters.

COPY

- id: random_away_lights

  alias: "Random Away Lights"

  mode: parallel 

  trigger:

    - platform: time_pattern

      minutes: "/30"

  condition:

    - condition: state

      entity_id: input_boolean.away

      state: "on"

    - condition: sun

      after: sunset

      after_offset: "-00:30:00"

    - condition: time

      before: "23:59:00"

  action:

    service: script.light_duration

    data:

      light: "{{states.group.simulation_lights.attributes.entity_id | random}}"

      duration: "00:{{ '{:02}'.format(range(5,30) | random | int) }}:00"


 

I created a group with a list of lights I want to use to simulate the presence. I put only the lights within the rooms visible from the outside.

COPY

simulation_lights:

  name: Lights Presence Simulation

  entities:

    - light.salle_manger

    - light.cuisine_table

    - light.bureau_marco

    - light.salon_corner


 


 


 

scheduler-component

https://github.com/nielsfaber/scheduler-component

https://github.com/nielsfaber/scheduler-card



 


 


 


 


 

reduce size of database

https://www.home-assistant.io/integrations/recorder

recorder:

purge_keep_days: 5

db_url: sqlite:////home/user/.homeassistant/test


 


 


 

https://community.home-assistant.io/t/simple-way-to-reduce-your-db-size/234787

open up a terminal (SSH or via web, I use this extension for this purpose https://github.com/hassio-addons/addon-ssh 130)

change directory to config cd ~/config

open sqlite shell sqlite3 home-assistant_v2.db

enter the following commands in the shell:
.header on
.mode column
.width 50, 10,
SELECT entity_id, COUNT(*) as count FROM states GROUP BY entity_id ORDER BY count DESC LIMIT 20;


 


 

https://community.home-assistant.io/t/how-to-keep-your-recorder-database-size-under-control/295795

homeassistant:

allowlist_external_dirs:

- /config

sensor:

- platform: filesize

file_paths:

- /config/home-assistant_v2.db


 


 


 


 


 


 


 


 

WIZ light scenes

https://github.com/sbidy/pywizlight/blob/a11d2c7744d7110eb42ce8af5eddb3f6f40bd228/pywizlight/scenes.py

SCENES = {

1: "Ocean",

2: "Romance",

3: "Sunset",

4: "Party",

5: "Fireplace",

6: "Cozy",

7: "Forest",

8: "Pastel Colors",

9: "Wake up",

10: "Bedtime",

11: "Warm White",

12: "Daylight",

13: "Cool white",

14: "Night light",

15: "Focus",

16: "Relax",

17: "True colors",

18: "TV time",

19: "Plantgrowth",

20: "Spring",

21: "Summer",

22: "Fall",

23: "Deepdive",

24: "Jungle",

25: "Mojito",

26: "Club",

27: "Christmas",

28: "Halloween",

29: "Candlelight",

30: "Golden white",

31: "Pulse",

32: "Steampunk",

1000: "Rhythm",

}


 


 


 

ESP32 Wifi repeater

https://iotprojectsideas.com/portable-esp32-wifi-repeater/


 

download repository and flash tool:

https://github.com/martin-ger/esp32_nat_router

https://www.espressif.com/en/support/download/other-tools


 

run the tool and select the three files in the folder D:\Home Assistant\ESP32_wifi_repeater\esp32_nat_router-master\build\esp32: bootloader.bin, firmware.bin, partitions.bin


 

Now, we also need to specify the hex code indicating where the files are. For the bootloader type 0x1000, for esp32 nat router file type 0x10000, and for partition file type 0x8000.


 

Press and hold the boot button on your ESP32 board and click on the start button to start flashing firmware.


 


 


 

After the first boot, it provides an open WiFi SSID “ESP32_NAT_Router“. Connect to this WiFi network and perform basic configuration via a simple web interface.


 

The web interface allows for the configuration of all the parameters required for basic forwarding functionality. Open your web browser and enter the following address: “http://192.168.4.1“. Now you should see the following page.


 

Firstly, in the “STA Settings” enter the correct WiFi credentials of your main WiFi network that you want to extend. Leave the password field for open networks. Click on “Connect“. The ESP32 reboots and will connect to your WiFi router. You should see the status LED ON after a few seconds.


 

You can now reload the page and change the “AP Settings“. Enter New SSID and Password and click “Set” and again the ESP reboots. Now it is ready for forwarding traffic over the newly configured Access Point.


 

SSID: ESP32_NAT_Router

pass: mysupersecurepassword


 


 


 


 


 


 


 


 

install home assistant in docker


 


 


 

install Docker

192.168.178.52

pi

raspberry


 

https://raspberrytips.com/docker-on-raspberry-pi/

sudo apt update

sudo apt upgrade -y

sudo reboot

curl -sSL https://get.docker.com | sh

Allow Docker to be used without being a root → So, here is the command to add the current user to the docker group: sudo usermod -aG docker $USER → sudo usermod -aG docker pi

Exit your SSH session, or restart the Raspberry Pi, and you should then be able to run any docker command without sudo. → docker ps → If it works, you are ready to move forward.

Test your Docker setup: docker run hello-world


 

Docker commands you need to know

Monitor the running containers:

docker ps

Display the current version of Docker:

docker version

Download a new image:

docker pull [IMAGE]

Run an image (and download it if not existing on your local system):

docker run [IMAGE]

Search for an image in the Docker repository:

docker search [X]

Show the usage statistics:

docker stats

Display the list of all the Docker commands:

docker help


 


 


 


 

install HA on docker

https://www.home-assistant.io/installation/raspberrypi#install-home-assistant-container

docker run -d \

--name homeassistant \

--privileged \

--restart=unless-stopped \

-e TZ=Europe/Berlin \

-v /PATH_TO_YOUR_CONFIG:/config \

--network=host \

ghcr.io/home-assistant/home-assistant:stable


 

Once the Home Assistant Container is running Home Assistant should be accessible using http://<host>:8123

http://192.168.178.52:8123


 


 


 

RESTART HOME ASSISTANT

docker restart homeassistant


 


 


 


 


 


 

configuration

https://community.home-assistant.io/t/configurator-file-editor-for-ha-core-in-docker/238472/4

cd ~/docker

mkdir configurator

cd configurator

sudo nano docker-compose.yaml


 

version: "3.5"

services:

configurator:

container_name: configurator

image: causticlab/hass-configurator-docker:latest

restart: always

network_mode: host

labels:

- "com.centurylinklabs.watchtower.enable=true" # for Watchtower automatic updates

ports:

- "3218:3218/tcp"

volumes: 

- ${HASSIODIR}/:/config # map this volume to your hassio config directory

environment: 

- HC_BASEPATH=/config

- HC_HASS_API_PASSWORD=${CONFIGURATORPSWD} #Create a Long-Lived Access Token

- HC_IGNORE_SSL=True 

- PUID=${PUID}

- PGID=${PGID}

- TZ=${TZ}'


 

docker-compose up -d


 

http://192.168.178.52:3218


 


 

https://community.home-assistant.io/t/configure-ssl-with-docker/196878

edit configuration.yaml:

http:

base_url: https://myhomeassistant.com:8123

ssl_certificate: /config/fullchain.pem

ssl_key: /config/privkey.pem


 

create certifactes:

cd /PATH_TO_YOUR_CONFIG

sudo openssl req -sha256 -addext "subjectAltName = IP:192.168.178.52" -newkey rsa:4096 -nodes -keyout privkey.pem -x509 -days 730 -out fullchain.pem


 


 


 

install Nginx on docker

Home Assistant in Docker with Nginx and Let's Encrypt on Raspberry Pi


 

cd ~/docker

mkdir proxy

cd proxy

sudo nano docker-compose.yaml


 

version: '3'

services:

nginx:

image: arm64v8/nginx

ports:

- "80:80"

volumes:

- ./data/nginx:/etc/nginx/conf.d:ro

- ./data/wwwroot:/var/www/root:ro


 

mkdir data

cd data

mkdir nginx

cd nginx

sudo nano app.conf


 

server {

listen 80;

server_name habora.duckdns.org; #replace this

location / {

root /var/www/root;

}

}


 

cd ..

mkdir wwwroot

cd wwwroot

sudo nano index.html


 

<html>

<body>

<h1>Welcome</h1>

It works!

</html>T


 

cd ~/docker/proxy

docker-compose up -d


 

http://192.168.178.52:80/


 

cd ~/docker/proxy

sudo nano docker-compose.yaml


 

version: '3'

services:

nginx:

image: arm64v8/nginx

ports:

- "80:80"

- "443:443" # added

volumes:

- ./data/nginx:/etc/nginx/conf.d:ro

- ./data/wwwroot:/var/www/root:ro

- ./data/certbot/conf:/etc/letsencrypt:ro # added

- ./data/certbot/www:/var/www/certbot:ro # added


 

certbot: # added

image: certbot/certbot:arm64v8-latest # added

volumes: # added

- ./data/certbot/conf:/etc/letsencrypt # added

- ./data/certbot/www:/var/www/certbot # added


 


 

cd ~/docker/proxy/data/nginx

sudo nano app.conf


 

server {

listen 80;

server_name habora.duckdns.org; # replace this

location /.well-known/acme-challenge/ { # added

root /var/www/certbot; # added

} # added

location / {

root /var/www/root;

}

}

server {

listen 443 ssl;

server_name habora.duckdns.org;


 

location / {

root /var/www/root;

}


 

ssl_certificate /etc/letsencrypt/live/habora.duckdns.org/fullchain.pem;

ssl_certificate_key /etc/letsencrypt/live/habora.duckdns.org/privkey.pem;

 

#Optional: Only works with Philipp's script (see below)

include /etc/letsencrypt/options-ssl-nginx.conf;

ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;

}


 

cd ~/docker/proxy

curl -L https://raw.githubusercontent.com/wmnnd/nginx-certbot/master/init-letsencrypt.sh > init-letsencrypt.sh


 

sudo nano init-letsencrypt.sh

Edit the script to add in your domain(s) and your email address. If you’ve changed the directories of the shared Docker volumes, make sure you also adjust the data_path variable as well.

Email: boraers@googlemail.com, https://habora.duckdns.org


 

chmod +x init-letsencrypt.sh

sudo ./init-letsencrypt.sh


 

docker-compose up -d

http://habora.duckdns.org:80/


 

rm docker-compose.yaml

sudo nano docker-compose.yaml


 

version: '3'

services:

nginx:

image: arm64v8/nginx

ports:

- "80:80"

- "443:443" 

volumes:

- ./data/nginx:/etc/nginx/conf.d:ro

- ./data/wwwroot:/var/www/root:ro

- ./data/certbot/conf:/etc/letsencrypt:ro 

- ./data/certbot/www:/var/www/certbot:ro 

command: "/bin/sh -c 'while :; do sleep 6h & wait $${!}; nginx -s reload; done & nginx -g \"daemon off;\"'"

certbot: 

image: certbot/certbot:arm64v8-latest 

volumes: 

- ./data/certbot/conf:/etc/letsencrypt 

- ./data/certbot/www:/var/www/certbot 

entrypoint: "/bin/sh -c 'trap exit TERM; while :; do certbot renew; sleep 12h & wait $${!}; done;'"


 


 


 


 


 


 

http://192.168.178.52:81/

http://192.168.178.52:9000/


 


 


 

working procedure:

https://nginxproxymanager.com/guide/#quick-setup

cd ~/docker/proxy

sudo rm * -R

sudo nano docker-compose.yml


 

version: '3'

services:

app:

image: 'jc21/nginx-proxy-manager:latest'

restart: unless-stopped

ports:

- '80:80'

- '81:81'

- '443:443'

volumes:

- ./data:/data

- ./letsencrypt:/etc/letsencrypt


 

docker-compose up -d


 

https://theprivatesmarthome.com/how-to/set-up-nginx-proxy-manager-in-home-assistant/

open the admin page:

http://127.0.0.1:81

http://192.168.178.52:81

Email: admin@example.com

Password: changeme


 

add prox host:

domain names: habora.duckdns.org

scheme: http

forward hostname / ip: 192.168.178.52:8123

forward port: 8123

ache asset: false

block common explots: true

websockets support: true

access list: publicl accessible

SSL

“request a new ssl certificate”

force SSL: true

boraers@googlemail.com


 

edit configuration.yaml

http:

use_x_forwarded_for: true

trusted_proxies:

- 172.16.0.0/12


 


 

these options work now ==>

http://192.168.178.52:8123/lovelace/0

https://habora.duckdns.org/lovelace/0


 


 


 

install duckdns containers

https://www.addictedtotech.net/nginx-proxy-manager-tutorial-duckdns-configuration-episode-7/


 

STEP 1: SET UP A DUCKDNS ACCOUNT.

The First thing to do will be to set up a DuckDNS account which is easy.

Just navigate to their homepage and log in using one of the many sign in options they offer. In our example we use Google.

 



 



 



 

https://www.duckdns.org 

 

STEP 2: ENTER A DUCKDNS SUBDOMAIN.

Once logged in we are going to create a subdomain by entering into the white box a name you would like to use for your service.

Note: You will need to create a new subdomain for each docker container service you host.

In our example, we just put in “a2t“. Then click on the green “add domain” button.

This now gives us a domain name to use. In our case it is a2t.duckdns.org.

The DuckDNS service will automatically take the public IP address you are currently on and add this to the IP field. If you are using a VPN, proxy or are using any other network that is different from the one you want to host your service on you will need to update this IP manually to start with to ensure the correct IP address is used. (This will be auto-updated later by our DuckDNS container either way).

STEP 3: CREATE AND DEPLOY THE DUCKDNS CONTAINER USING A STACK.

Now we have our subdomain we are going to “log in” to our “Portainer” dashboard on our Raspberry Pi and navigate to the “Stacks” page:

 



 



 



 

http://192.168.2.5:9000/#!/1/docker/stacks 

 

From there we are going click on the “Add stack” button.

This will open up a new Stack creation window. We will then name our stack “duckdns

Then in the Web editor we will paste the following Docker compose data into the empty field.

DOCKER COMPOSE STACK:

 



 



 



 

--- 

 

version: "2.1"

services:

duckdns:

image: ghcr.io/linuxserver/duckdns

container_name: duckdns

environment:

- PUID=1000 #optional

- PGID=1000 #optional

- TZ=Europe/London

- SUBDOMAINS=subdomain1,subdomain2

- TOKEN=token

- LOG_FILE=false #optional

volumes:

- /path/to/appdata/config:/config #optional

restart: unless-stopped

---

version: "2.1"

services:

duckdns:

image: ghcr.io/linuxserver/duckdns

container_name: duckdns

environment:

#- PUID=1000 #optional

#- PGID=1000 #optional

- TZ= Europe/Berlin

- SUBDOMAINS=habora #subdomain1,subdomain2

- TOKEN=799093a4-0b34-454f-99cb-25a4637bf404

- LOG_FILE=false #optional

volumes:

- /path/to/appdata/config:/config #optional

restart: unless-stopped


 


 

You will then need to change the fields to match your installation. If you would like to use a specific user account then you will need to find the PUID and GUID of that user account. We have shown how to do this in our Youtube Video so please watch that. If you would like to go with the defaults just remove both these fields as they are optional.

Set your timezone “TZ” to your current location.

Add your subdomain name to the “SUBDOMAIN” field. If you have more than one you will need to add an entry for each subdomain you wish to use and separate them with a comma.

Note you do not need to add the full domain name only the subdomain part. In our example, we would only put “a2t” into the “SUBDOMAIN” field. not a2t.duckdns.org.

Add your Token to the TOKEN field, which can be found on the Duckdns subdomain creation page at the top right. This is unique to every user and only needs to be put in once regardless of how many subdomains you use.

If you would like to use logs then you can change the field to “true” this is optional.

Under Volumes add the location of where you install all your Docker data.

Now you have set them fields your Docker compose Stack should look something like this:

Now you have confirmed all is set up correctly you can press the “Deploy the stack” button.

You can now check the Portainer containers page to confirm the “duckdns” container has been created correctly.

Press the Logs button to check all is as expected. It should look like this:

To confirm your domain is working correctly you can open a browser window and enter your domain name into the address field.

 



 



 



 

http://a2t.duckdns.org 

 

You should now see this:


 


 


 


 


 

Mosquitto (MQTT broker) on Raspberry Pi / Docker

https://www.schaerens.ch/raspi-setting-up-mosquitto-mqtt-broker-on-raspberry-pi-docker/

Install Docker on Raspberry Pi

curl -sSL https://get.docker.com | sh


 

Add user pi to group docker:

sudo usermod -aG docker pi


 

Install Docker Compose (first install Python and Pip)

sudo apt-get install libffi-dev libssl-dev python3-dev python3 python3-pip -y

sudo pip3 install docker-compose


 

sudo reboot


 


 

Create the following directory tree

sudo mkdir /docker

sudo mkdir /docker/mosquitto

sudo mkdir /docker/mosquitto/config


 

Create the config file for Mosquitto with the following content:

sudo nano /docker/mosquitto/config/mosquitto.conf

# Config file for mosquito

listener 1883

#protocol websockets

persistence true

persistence_location /mosquitto/data/

log_dest file /mosquitto/log/mosquitto.log

allow_anonymous false


 


 

Create the config file for docker-compose with the following content (pay attention to the indentation of the lines in the YAML file, use 4 spaces per indentation, no tabs):

cd /docker

sudo nano docker-compose.yaml


 

version: '3'


 

services:

mosquitto:

container_name: mosquitto

restart: always

image: eclipse-mosquitto

ports:

- "1883:1883"

- "9001:9001"

volumes: 

- ./mosquitto/config/mosquitto.conf:/mosquitto/config/mosquitto.conf

- ./mosquitto/data:/mosquitto/data

- ./mosquitto/log:/mosquitto/log

networks:

- default


 

networks:

default:


 


 

version: "3"


 

services:

mosquitto:

image: eclipse-mosquitto

network_mode: host

volumes:

- ./conf:/mosquitto/conf

- ./data:/mosquitto/data

- ./log:/mosquitto/log


 


 


 


 

sudo nano /docker/mosquitto/config/mosquitto.conf


 

## Config file for mosquito

listener 1883

#protocol websockets

persistence true

persistence_location /mosquitto/data/

log_dest file /mosquitto/log/mosquitto.log

#allow_anonymous false

password_file /mosquitto/config/mosquitto.conf


 


 


 


 

docker-compose exec mosquitto mosquitto_passwd -c /mosquitto/config/mosquitto.passwd mosquitto


 


 


 

sudo apt install docker-compose

pip3 install --upgrade requests


 


 

docker run -d -p 8080:80 --name webserver nginx

docker rm mosquitto

sudo docker run -d -it --name mosquitto -p 127.0.0.1:1883:1883 eclipse-mosquitto

sudo docker run -d -it --name mosquitto -p 8001:8001 myserver_new

https://community.openhab.org/t/mosquitto-error-address-already-in-use/121506


 


 

Now you can install and start Mosquitto:

docker-compose up -d


 

Check if Mosquitto is running:

docker ps


 


 


 


 

https://hub.docker.com/_/eclipse-mosquitto/

docker pull eclipse-mosquitto


 


 

working approach

https://medium.com/himinds/mqtt-broker-with-secure-tls-and-docker-compose-708a6f483c92

https://www.diyhobi.com/install-mqtt-and-openhab-3-in-docker-raspberry-pi-4/

curl -sSL https://get.docker.com | sh

sudo usermod -aG docker pi

sudo apt-get install libffi-dev libssl-dev python3-dev python3 python3-pip -y

sudo pip3 install docker-compose

sudo reboot

cd

mkdir docker

cd docker

mkdir smarthome

mkdir smarthome/mqtt

mkdir smarthome/mqtt/config


 

sudo nano smarthome/mqtt/config/mosquitto.conf

# Config file for mosquitto


 

listener 1883


 

persistence true


 

persistence_location /mosquitto/data/


 

log_dest file /mosquitto/log/mosquitto.log


 

allow_anonymous false


 


 

cd smarthome

nano docker-compose.yaml


 

version: '3.5'


 

services:

#mqtt

mosquitto:

container_name: mqtt

#hostname: mosquitto

restart: always

image: eclipse-mosquitto

ports:

- "8883:8883"

- "9001:9001"

volumes: 

- ./mqtt/config/mosquitto.conf:/mosquitto/config/mosquitto.conf

- ./mqtt/data:/mosquitto/data

- ./mqtt/log:/mosquitto/log

networks:

- default


 


 

networks:

default:


 


 


 

docker-compose up -d


 

docker ps

cd ~/docker/smarthome

sudo rm * -R


 

cd mqtt

cd config

ls

sudo rm mosquitto.conf -R


 

sudo nano mosquitto.conf


 

# Config file for mosquitto


 

listener 1883


 

persistence true


 

persistence_location /mosquitto/data/


 

log_dest file /mosquitto/log/mosquitto.log


 

allow_anonymous false


 


 

cd ~/docker/smarthome


 

docker-compose up -d


 


 


 


 

docker exec -it mqtt sh

mosquitto_passwd -c /mosquitto/data/pwfile mymqtt

Username: mymqtt, Password: mypassword


 

exit


 

sudo nano ~/docker/smarthome/mqtt/config/mosquitto.conf

Paste this at the bottom: password_file /mosquitto/data/pwfile


 

docker start mqtt

docker ps


 


 


 

192.168.178.52:1883


 


 


 

Installation of portainer

https://darkwolfcave.de/raspberry-pi-docker-ohne-probleme-installieren/

docker volume create portainer_data

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

docker ps


 

https://IP-DEINES-RASPBERRYS:9443 → https://192.168.178.52:9443

user: admin, pass: password1234


 


 


 


 

install influxdb

sudo mkdir /opt/influxdb

sudo mkdir /opt/grafana

sudo chmod 775 /opt/influxdb/ /opt/grafana/


 

influxdb:1.8

8086

/var/lib/influxdb


 

grafana/grafana

3000

/var/lib/grafana (was leider nur auf der Grafana Seite direkt steht und nicht hier)


 


 


 


 

Starte, am besten in einem neuen Tab, deine Portainer-Umgebung (https://IP-DES_RASPBERRY:9443) und logge dich ein.
In der linken Menüseite wähle den Punkt „Containers“ und dann klicke auf den Button “ + Add container„:

Raspberry Pi Monitoring - Portainer - Container

Lass dich von den Einstellungen nicht erschlagen. Nicht alle benötigen wir, und alle anderen werden nach und nach klarer.

Raspberry Pi Monitoring - Portainer Einstellungen

Als Erstes geben wir unserem Container einen Namen(1)influxDB

Dann suchen wir das entsprechende Image (2) bei „DockerHub“ : influxdb:1.8

Jetzt klickst du auf den Button publish a new network port(3) und trägst bei Host(4) und Container(5) jeweils den Port 8086 ein

image 42

Unter dem Punk „Command & logging“ solltest du für die Console „Interactive & TTY“ auswählen.

image 16

Etwas weiter unten klickst du jetzt auf „Volumes(1)„, dann auf „map additional volume(2)“ sowie auf den Button „Bind(3)„.
Du erinnerst dich noch an den Pfad, den wir auf der hub.docker Seite unter influxDB in der Beschreibung gesehen haben?
Denn diesen müssen wir jetzt bei „container(4)“ eintragen: /var/lib/influxdb.
Bei „Host(5)“ kommt jetzt das Gegenstück dazu rein, nämlich der Ordner, den wir für die persistenten Daten auf unserem Raspberry angelegt haben: /opt/influxdb

Im Reiter „Restart policy“ geben wir noch an, wie sich unser Container verhalten soll, falls der Raspberry mal neu startet oder der Container selbst sich mit einem Fehler beendet hat. Hier wählen wir „Always“ – er soll also immer wieder selbst neu starten.

image 38


Nun haben wir soweit alles angegeben was wir benötigen und können, wieder etwas weiter oben, auf den Button „Deploy the container“ klicken.
Das Ganze dauert dann ein wenig, da zu erst das Image heruntergeladen, entpackt und der Container entsprechend angelegt werden muss. Beim nächsten Deploy des Containers würde es deutlich schneller gehen:

image 18

Hiermit hast du jetzt influxDB erfolgreich als Container gestartet. Prüfen kannst du das natürlich auch. Im Menüpunkt Containers wirst du in der Übersicht einen neuen influxDB Container im Status running sehen. Schaue auch ruhig einmal in die Logs.


 


 


 


 

http://192.168.178.52:8086/

user:bora, pass:password1234, orga:home, bucket:influxdb_rapi4

token_01: GK_kb2fTPaEknWQ7c9c5VRU5c5GeRXv8is3_e0qhn9qXLOdbxHkdAfqYZNrfn1jexfQ-RVKYtX7Co9HvKgIJqg==


 


 


 

subscribe to MQTT broker

https://diyi0t.com/visualize-mqtt-data-with-influxdb-and-grafana/


 


 

https://thenewstack.io/python-mqtt-tutorial-store-iot-metrics-with-influxdb/


 


 


 


 


 


 


 


 


 


 


 

Install Grafana

https://darkwolfcave.de/raspberry-pi-monitoring-grafana-installieren/

Raspberry Pi Monitoring - Portainer - Container deploy

(1) – Name des Containers: „Grafana„

(2) – Name des Image: „grafana/grafana„

(3) – Anklicken um neue Ports eingeben/binden zu können

(4) – Port des Hosts(Raspberry): 3000

(5) – Port des Containers: 3000

(6) – Button „Volumes“ anklicken

(7) – Den Button bei Volume mapping klicken damit wir die Pfade eingeben können

(8) – Button „Bind“ anklicken

(9) – Pfad des Containers: /var/lib/grafana

(10) – Pfad auf dem Host(Raspberry) dazu: /opt/grafana

Im Reiter „Restart policy“ geben wir jetzt noch an, wie sich unser Container verhalten soll, falls der Raspberry mal neu startet oder der Container selbst sich mit einem Fehler beendet hat. Hier wählen wir „Always“ – er soll also immer wieder selbst neu starten.

Unter dem Punk „Command & logging“ solltest du für die Console „Interactive & TTY“ auswählen.

(11) – Button „Deploy the container“ klicken


 

http://IP-DEINES-RASPBERRY:3000 → http://192.168.178.52:3000


 

Mit dem Default User und Passwort (admin/admin) kannst du dich einloggen und direkt das Passwort ändern.


 


 


 

InfluxDB mit Grafana verbinden

Wir loggen uns jetzt wieder in der Grafana WebGui auf dem Raspberry ein (IP-DEINES_RASPBERRYS:3000).
Hier wählen wir auf der linken Seite das Zahnrad und „Data sources“ aus, dann klicken wir auf den Button „Add data source“ und sagen zum Schluss wir wollen eine InfluxDB hinzufügen:

image 31
image 32
image 33

Jetzt müssen wir nur noch ein paar Angaben zu der Datenbank machen. Damit es einfacher zu handhaben ist, verzichte ich hier vollkommen auf Username / Passwörter. Bedeutet die Datenbank ist frei zugänglich. Da dies alles nur in unserem Netzwerk läuft, ist das kein Problem. Bedenke aber das man unter anderen Umständen immer User und Passwörter vergeben sollte.

Zurück zu unseren Einstellungen.
Unter Name kannst du einen Namen vergeben der dann später als Quelle in deinem Dashboard auswählbar ist.
Im Bereich HTTP und URL gibst du die IP deines Raspberrys ein auf dem die Datenbank läuft, gefolgt von dem Port 8086
Die restlichen Einstellungen können so bleiben.

image 34

Etwas weiter unten musst du noch den Datenbank Namen angeben aus dem die Daten gelesen werden sollen. Du erinnerst dich? Wir haben diesen weiter oben in die telegraf.conf eingetragen. In meinem Fall als „raspberry_live„.
Über den Button „Save & test“ prüfen wir die Verbindung. Ein grüner Haken und „Data source is working„, zeigt uns an, das alles funktioniert hat:

image 35

Dashboard für Grafana besorgen

Was wäre ein Raspberry Pi Monitoring ohne ein Dashboard?
Damit wir bei Grafana ein solches sehen können, müssten wir uns selbst eins erstellen oder – was ich hier bevorzuge – ein fertiges Dashboard importieren.
Du kannst dir auf der Grafana Labs Seite alle verfügbaren Dashboards ansehen und entsprechend suchen. Wir wollen ja ein speziell für einen Raspberry Pi erstelltes nutzen, daher suchen wir auch nach „Raspberry“.
Ich denke du wirst dann bei deiner Suche direkt auf dieses hier treffen: Raspberry Pi Monitoring

Raspberry Pi Monitoring - Grafana Dashboard

Dieses nehmen wir auch direkt. Wie?! Ganz einfach: Kopiere dir die ID oben Rechts „10578„.
Dann öffnest du bei dir deine Grafana Umgebung (IP-DEINES_RASPBERRYS:3000) und gehst über den Menüpunkt „Dashboards“ auf „+ Import„:

image 28

Hier trägst du die gerade kopierte oder gemerkte ID des Dashboards ein (10578) und betätigst den „Load“ Button.

image 29

Jetzt könntest du den Namen des Dashboards ändern und musst auf jeden Fall die Verbindung zu den Daten – also zu der influxDB – angeben.
Diese hatten wir ja gerade eingerichtet und du solltest sie in dem Drop-Down-Feld auswählen können. In meinem Fall „Raspberry Pi Monitoring“

image 36

Ist alles eingestellt, klicken wir auf den „Import“ Button und sehen einige Sekunden später bereits unser Dashboard mit Daten.
Ab jetzt kannst du dich einfach mal in Ruhe durch alle Punkte klicken und dir das Dashboard anschauen. Je länger dein Raspberry läuft, je mehr Daten erscheinen. Oben Rechts kannst du die Aktualisierungsrate einstellen. Default ist 1 Minute.

Herzlichen Glückwunsch, dein Raspberry Pi Monitoring ist somit fertig und funktionsfähig. Viel Spaß damit!

image 37




 


 

Grafana with influxdb 2.x

https://www.youtube.com/watch?v=gEIgg5zHuIU

the influxdb data explorer, select a quer and cop from the script editor


 


 


 


 


 


 

Install telegraf

https://darkwolfcave.de/raspberry-pi-monitoring-grafana-installieren/

Willkommen zurück! Na?! Kopf wieder etwas abgekühlt und aufnahmefähig? 🙂
Dann lass uns direkt weitermachen und die letzten paar Dinge erledigen.

Was jetzt kommt, wird wieder direkt auf dem Raspberry installiert. Also nicht als Container.
Dazu wie immer per SSH mit deinem pi verbinden.

Damit wir Zugriff auf die Quelle von influxDB haben, um uns Pakete herunterladen zu können, besorgen wir uns einen Key und speichern ihn auf dem Raspberry:

wget -q https://repos.influxdata.com/influxdata-archive_compat.key

cat influxdata-archive_compat.key | gpg --dearmor | sudo tee /etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg > /dev/null

echo 'deb [signed-by=/etc/apt/trusted.gpg.d/influxdata-archive_compat.gpg] https://repos.influxdata.com/debian stable main' | sudo tee /etc/apt/sources.list.d/influxdata.list

sudo rm -f /etc/apt/trusted.gpg.d/influxdb.gpg

Dann aktualisieren wir unsere Quellen und installieren apt-transport-https, was wir für den weiteren Schritt benötigen.

sudo apt-get update && sudo apt-get install apt-transport-https

Um später auch Updates erhalten zu können, fügen wir noch einen Eintrag in unserer Paketquelle hinzu:

sudo echo 'deb [signed-by=/etc/apt/trusted.gpg.d/influxdb.gpg] https://repos.influxdata.com/debian stable main' | sudo tee /etc/apt/sources.list.d/influxdata.list

Final installieren wir endlich Telegraf:

sudo apt-get update && sudo apt-get install telegraf

Raspberry Pi Monitoring - Telegraf installieren

Es sollte jetzt von repos.influxdata.com das Paket für telegraf heruntergeladen und installiert werden.
Für mehr Informationen, und weiterführende Konfigurationen, schaue dir die Installationsanleitung von Telegraf an.


 

telegraf konfigurieren

Uns fehlen noch ein paar Konfigurationen, damit wir für unser Raspberry Pi Monitoring auch alle benötigten Informationen bekommen, und in unserer Datenbank speichern können.
Dafür öffnen wir eine config Datei von telegraf:

sudo nano /etc/telegraf/telegraf.conf

Viel Spaß beim scrollen…. ja diese Datei ist WIRKLICH gefühlt unendlich lang. Aber keine Sorge, wir machen da nicht sehr viel mit und müssen es auch für unsere Anforderungen nicht.

Suche mal nach „OUTPUT PLUGINS“ und dann nach [[output.influxdb]]. Unter diesem Punkt geben wir jetzt an, wo sich unsere influxdb-Datenbank befindet.
Bei dem letzten auskommentierten (#) urls Eintrag entfernen wir einfach die Raute(#) und können es im Prinzip so lassen. Die 127er IP ist der localhost. Da die influxdb ja direkt auf dem Raspberry läuft, kann diese so erreicht werden.
Falls du noch einen zweiten Raspberry hast, würdest du bei diesem hier die IP des Hosts eingeben, auf dem die influxdb-Datenbank läuft.

Ein wenig unter diesem Eintrag entfernen wir auch die Raute(#) vor dem „database = “ und geben unserer Datenbank einen Namen.
Diese wird dann später automatisch angelegt und wir brauchen uns da nicht selbst drum kümmern.
Ich habe meine hier „raspberry_live“ genannt, damit ich später weiß von welchem meiner raspberrys die Daten sind. Bei einem weiteren pi würde ich zum Beispiel „raspberry_test“ oder sowas nehmen.

Raspberry Pi Monitoring - Telegraf config

Ich greife jetzt einen Schritt vor, denn ich nutze für mein Raspberry Pi Monitoring bei Grafana ein fertiges Dashboard. Und der Entwickler gibt noch ein paar Parameter an, die man in die telegraf.conf eintragen sollte. Daher scrollen wir jetzt sehr weit nach unten bis du „INPUT PLUGINS“ sehen kannst. Direkt da drunter fügst du dann folgendes ein:

#In order to monitor both Network interfaces, eth0 and wlan0, uncomment, or add the next:

[[inputs.net]]

[[inputs.netstat]]

[[inputs.file]]

files = ["/sys/class/thermal/thermal_zone0/temp"]

name_override = "cpu_temperature"

data_format = "value"

data_type = "integer"

[[inputs.exec]]

commands = ["/opt/vc/bin/vcgencmd measure_temp"]

name_override = "gpu_temperature"

data_format = "grok"

grok_patterns = ["%{NUMBER:value:float}"]

image 30

Jetzt speichere die Datei und verlasse sie. Denn hier sind wir erstmal mit fertig.
Damit wir auf dem Raspberry auch auf die Werte von GPU usw. zugreifen dürfen, müssen wir den telegraf User noch in eine Gruppe hinzufügen:

sudo usermod -G video telegraf

Noch haben unsere Änderungen keine Wirkung, daher starten wir den Service telegraf einmal neu:

sudo service telegraf restart

Ab jetzt sollten Daten gesammelt und in die Datenbank geschrieben werden.
Was weiterhin fehlt ist das Dashboard, damit wir auch etwas sehen, und die Konfiguration zur Datenbank, damit Grafana auch weiß woher die Daten kommen sollen!


 


 


 

Telegraf with influxdb 2.x

https://docs.influxdata.com/influxdb/v2.6/write-data/no-code/use-telegraf/manual-config/


 

create database/bucket in influxdb

then, edit telegraf.conf as described in section above but use bucket, token, etc.

need a section [[output.influxdb_v2]]