Initial commit of existing code

This commit is contained in:
Bora 2025-12-28 15:37:05 +01:00
commit 631e7c590f
4 changed files with 1298 additions and 0 deletions

3
.gitignore vendored Normal file
View File

@ -0,0 +1,3 @@
*.hex
build/
.DS_Store

View File

@ -0,0 +1,413 @@
// DFRobot Beetle ESP32-C6 Partition Scheme: Zigbee ZCZR 4MB with spiffs
// Zigbee Mode: Zigbee ZR/ZC (coordinator,router)
// LED: GPIO15, on when HIGH
// DFRobot FireBeetle2 ESP32-C6
// Partition Scheme: Zigbee ZCZR 4MB with spiffs
// Zigbee Mode: Zigbee ZR/ZC (coordinator,router)
// LED: LED_BUILTIN, on when HIGH
// Node16: BME680 + T6713 only
#ifndef ZIGBEE_MODE_ZCZR
#error Zigbee coordinator/router mode is not selected in Tools->Zigbee mode
#endif
#define DEBUG_TRACE // Comment out DEBUG_TRACE to reduce normal-path logging
#include "Zigbee.h"
#include "Wire.h"
#include "bme68xLibrary.h"
// -----------------------------------------------------------------------------
// Hardware definitions (shared I2C bus)
// -----------------------------------------------------------------------------
#define LED_PIN LED_BUILTIN
#define I2C_SDA_PIN 17
#define I2C_SCL_PIN 16
#define POWER_PIN 21 // GPIO pin to power the sensor
// T6713 I2C address and registers
#define T6713_ADDR 0x15
#define T6713_REG_ABC_LOGIC 0x03EE
#define T6713_REG_STATUS 0x138A
// Endpoint numbers (BME680 + T6713 only)
#define BME_TEMP_ENDPOINT 10
#define BME_ANALOG_ENDPOINT 11
#define T6713_CO2_ENDPOINT 12
// Sensor objects (BME680 + T6713 only)
Bme68x bme;
ZigbeeTempSensor zbTempSensorBME(BME_TEMP_ENDPOINT);
ZigbeeAnalog zbAnalogBME(BME_ANALOG_ENDPOINT);
ZigbeeCarbonDioxideSensor zbCo2T6713(T6713_CO2_ENDPOINT);
// -----------------------------------------------------------------------------
// Health watchdog globals (BME + T6713 only)
// -----------------------------------------------------------------------------
SemaphoreHandle_t i2cMutex;
bool bmeFirstOk = false;
bool t6713FirstOk = false;
// Last-change tracking (BME + T6713 only)
float lastTempBme = NAN, lastHumBme = NAN, lastGasRes = NAN;
unsigned long lastTempBmeChangeMs = 0, lastHumBmeChangeMs = 0, lastGasResChangeMs = 0;
int lastCo2T6713 = -1;
unsigned long lastCo2T6713ChangeMs = 0;
unsigned long lastZigbeeOkMs = 0;
// Error counters (BME + T6713 only)
int bmeErrorCount = 0, t6713ErrorCount = 0;
const int maxI2cErrors = 10;
// Watchdog thresholds
const unsigned long WATCHDOG_PERIOD_MS = 10000; // 10s
const unsigned long SENSOR_STUCK_TIMEOUT_MS = 30UL * 60UL * 1000UL; // 30min
const unsigned long ZIGBEE_DOWN_TIMEOUT_MS = 10UL * 60UL * 1000UL; // 10min
// -----------------------------------------------------------------------------
// Zigbee health touch after successful reports
// -----------------------------------------------------------------------------
inline void zigbeeHealthTouch() {
if (Zigbee.connected()) lastZigbeeOkMs = millis();
}
// -----------------------------------------------------------------------------
// Helper: I2C guarded execution (use mutex)
// -----------------------------------------------------------------------------
#include <functional>
bool withI2C(std::function<bool(void)> fn, uint32_t timeoutMs = 100) {
if (xSemaphoreTake(i2cMutex, pdMS_TO_TICKS(timeoutMs)) == pdTRUE) {
bool ok = fn();
xSemaphoreGive(i2cMutex);
return ok;
}
return false;
}
// -----------------------------------------------------------------------------
// T6713 helper functions (unchanged)
// -----------------------------------------------------------------------------
int readT6713() {
int result = -1;
bool ok = withI2C([&]() -> bool {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04); // Function: Read Input Registers
Wire.write(0x13); Wire.write(0x8B); // 0x138B
Wire.write(0x00); Wire.write(0x01);
if (Wire.endTransmission() != 0) return false;
delay(10);
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() >= 4) {
Wire.read(); Wire.read(); // skip func+len
byte high = Wire.read();
byte low = Wire.read();
result = (high << 8) | low;
return true;
}
return false;
});
if (!ok) result = -1;
return result;
}
void configureT6713(bool enableABC) {
delay(1000);
// Optional status check
withI2C([&]() {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04); Wire.write(0x13); Wire.write(0x8A); // 0x138A
Wire.write(0x00); Wire.write(0x01);
Wire.endTransmission();
delay(10);
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() >= 4) {
Wire.read(); Wire.read();
uint16_t status = (Wire.read() << 8) | Wire.read();
#ifdef DEBUG_TRACE
if (status == 0x08) Serial.println("T6713 Warming up...");
#endif
}
return true;
});
uint16_t abcValue = enableABC ? 0xFF00 : 0x0000;
withI2C([&]() -> bool {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x05); // Write Single Coil
Wire.write(highByte(T6713_REG_ABC_LOGIC));
Wire.write(lowByte(T6713_REG_ABC_LOGIC));
Wire.write(highByte(abcValue));
Wire.write(lowByte(abcValue));
byte error = Wire.endTransmission();
if (error == 0) {
#ifdef DEBUG_TRACE
Serial.print("T6713 ABC Logic set to "); Serial.println(enableABC ? "ON" : "OFF");
#endif
} else {
#ifdef DEBUG_TRACE
Serial.println("T6713 Failed to set ABC Logic");
#endif
}
return (error == 0);
});
delay(100);
}
// -----------------------------------------------------------------------------
// BME68x task (endpoint 10/11)
// -----------------------------------------------------------------------------
static void bme680sensorvalueupdate(void *arg) {
for (;;) {
float temperature = NAN, humidity = NAN, gasResistance = NAN;
bme68xData data;
bool ok = withI2C([&]() {
bme.setOpMode(BME68X_FORCED_MODE);
delayMicroseconds(bme.getMeasDur());
if (bme.fetchData()) {
bme.getData(data);
temperature = data.temperature;
humidity = data.humidity;
gasResistance = data.gas_resistance;
return true;
}
return false;
});
if (ok) {
bmeErrorCount = 0;
unsigned long now = millis();
if (!bmeFirstOk) {
bmeFirstOk = true;
lastTempBme = temperature; lastHumBme = humidity; lastGasRes = gasResistance;
lastTempBmeChangeMs = lastHumBmeChangeMs = lastGasResChangeMs = now;
} else {
if (temperature != lastTempBme) { lastTempBme = temperature; lastTempBmeChangeMs = now; }
if (humidity != lastHumBme) { lastHumBme = humidity; lastHumBmeChangeMs = now; }
if (gasResistance != lastGasRes) { lastGasRes = gasResistance; lastGasResChangeMs = now; }
}
zbTempSensorBME.setTemperature(temperature);
zbTempSensorBME.setHumidity(humidity);
zigbeeHealthTouch();
zbAnalogBME.setAnalogInput(round(gasResistance));
zigbeeHealthTouch();
#ifdef DEBUG_TRACE
Serial.printf("BME68x T:%.2fC H:%.2f%% Gas:%.2f ohm\n", temperature, humidity, gasResistance);
#endif
} else {
bmeErrorCount++;
#ifdef DEBUG_TRACE
Serial.println("BME68x read error or I2C busy.");
#endif
if (bmeErrorCount >= maxI2cErrors) {
Serial.println("BME68x too many errors, restarting...");
delay(200); ESP.restart();
}
}
vTaskDelay(pdMS_TO_TICKS(10000)); // 10s
}
}
// -----------------------------------------------------------------------------
// T6713 task (endpoint 15)
// -----------------------------------------------------------------------------
static void t6713sensorvalueupdate(void *arg) {
for (;;) {
int co2t6713 = readT6713();
if (co2t6713 >= 0) {
t6713ErrorCount = 0;
unsigned long now = millis();
if (!t6713FirstOk) {
t6713FirstOk = true;
lastCo2T6713 = co2t6713;
lastCo2T6713ChangeMs = now;
} else if (co2t6713 != lastCo2T6713) {
lastCo2T6713 = co2t6713;
lastCo2T6713ChangeMs = now;
#ifdef DEBUG_TRACE
Serial.print("T6713 CO2: "); Serial.print(co2t6713); Serial.println(" ppm");
#endif
}
zbCo2T6713.setCarbonDioxide(co2t6713);
zigbeeHealthTouch();
} else {
t6713ErrorCount++;
#ifdef DEBUG_TRACE
Serial.println("T6713 read error.");
#endif
if (t6713ErrorCount >= maxI2cErrors) {
Serial.println("T6713 too many errors, restarting...");
delay(200); ESP.restart();
}
}
vTaskDelay(pdMS_TO_TICKS(10000)); // 10s
}
}
// -----------------------------------------------------------------------------
// Watchdog task (BME + T6713 only)
// -----------------------------------------------------------------------------
void watchdogTask(void *param) {
for (;;) {
#ifdef DEBUG_TRACE
Serial.println("Watchdog ran.");
#endif
unsigned long now = millis();
bool zigbeeBad = !Zigbee.connected() || (now - lastZigbeeOkMs > ZIGBEE_DOWN_TIMEOUT_MS);
bool bmeStuck = bmeFirstOk && (
(now - lastTempBmeChangeMs > SENSOR_STUCK_TIMEOUT_MS) ||
(now - lastHumBmeChangeMs > SENSOR_STUCK_TIMEOUT_MS) ||
(now - lastGasResChangeMs > SENSOR_STUCK_TIMEOUT_MS));
bool t6713Stuck = t6713FirstOk && (now - lastCo2T6713ChangeMs > SENSOR_STUCK_TIMEOUT_MS);
if (zigbeeBad || bmeStuck || t6713Stuck) {
Serial.println("Watchdog fault detected, restarting...");
delay(500); ESP.restart();
}
vTaskDelay(pdMS_TO_TICKS(WATCHDOG_PERIOD_MS));
}
}
// -----------------------------------------------------------------------------
// setup
// -----------------------------------------------------------------------------
void setup() {
Serial.begin(115200);
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);
pinMode(POWER_PIN, OUTPUT);
digitalWrite(POWER_PIN, HIGH); // Power on the sensor(s)
delay(100);
// I2C init
Wire.begin(I2C_SDA_PIN, I2C_SCL_PIN);
i2cMutex = xSemaphoreCreateMutex();
// BME680 init
Serial.println("Connecting to BME680...");
bme.begin(BME68X_I2C_ADDR_LOW, Wire); // BME68X_I2C_ADDR_LOW, BME68X_I2C_ADDR_HIGH
if (bme.checkStatus() == BME68X_ERROR) {
Serial.println("❌ BME68X_ERROR: " + bme.statusString());
} else if (bme.checkStatus() == BME68X_WARNING) {
Serial.println("⚠️ BME68X_WARNING: " + bme.statusString());
} else {
Serial.println("✓ BME68X status OK");
}
bme.setTPH(BME68X_OS_8X, BME68X_OS_2X, BME68X_OS_8X);
bme.setHeaterProf(300, 100);
bme.setOpMode(BME68X_FORCED_MODE);
zbTempSensorBME.setManufacturerAndModel("Espressif", "Node16_bme680th");
zbTempSensorBME.setPowerSource(ZB_POWER_SOURCE_MAINS);
zbTempSensorBME.setMinMaxValue(-20, 80);
zbTempSensorBME.setTolerance(1);
zbTempSensorBME.addHumiditySensor(0, 100, 1);
Zigbee.addEndpoint(&zbTempSensorBME);
zbAnalogBME.setManufacturerAndModel("Espressif", "Node16_bme680r");
zbAnalogBME.setPowerSource(ZB_POWER_SOURCE_MAINS);
zbAnalogBME.addAnalogInput();
Zigbee.addEndpoint(&zbAnalogBME);
// T6713 config & endpoint
configureT6713(true); // Enable ABC
zbCo2T6713.setManufacturerAndModel("Espressif", "Node16_t6713");
zbCo2T6713.setPowerSource(ZB_POWER_SOURCE_MAINS);
zbCo2T6713.setMinMaxValue(0, 10000);
Zigbee.addEndpoint(&zbCo2T6713);
// Start Zigbee as router
Serial.println("Starting Zigbee...");
if (!Zigbee.begin(ZIGBEE_ROUTER)) {
Serial.println("Zigbee failed to start! Rebooting...");
ESP.restart();
}
Serial.println("Zigbee started successfully! Connecting to network...");
bool ledState = false;
unsigned long startTime = millis();
const unsigned long timeoutMs = 60000;
while (!Zigbee.connected()) {
Serial.print(".");
ledState = !ledState;
digitalWrite(LED_PIN, ledState);
delay(100);
if (millis() - startTime > timeoutMs) {
Serial.println(" timed out (60s). Restarting...");
ESP.restart();
}
}
digitalWrite(LED_PIN, LOW);
Serial.println(" connected!");
lastZigbeeOkMs = millis();
// Create sensor tasks
xTaskCreate(bme680sensorvalueupdate, "bme_task", 4096, NULL, 10, NULL);
xTaskCreate(t6713sensorvalueupdate, "t6713_task", 4096, NULL, 10, NULL);
xTaskCreate(watchdogTask, "watchdog", 4096, NULL, 5, NULL);
// Reporting configuration (after Zigbee.begin)
zbTempSensorBME.setReporting(60, 0, 0.5);
zbAnalogBME.setAnalogInputReporting(60, 600, 10);
zbCo2T6713.setReporting(30, 300, 10);
}
// -----------------------------------------------------------------------------
// loop (light - button reset + test commands)
// -----------------------------------------------------------------------------
void loop() {
// Test commands via Serial
if (Serial.available()) {
char cmd = Serial.read();
switch (cmd) {
case 'Z': // Force Zigbee failure (watchdog test)
Serial.println("SIM Zigbee disconnect test");
lastZigbeeOkMs = 0; // Watchdog sees Zigbee down
break;
case 'E': // Force stuck sensor detection
Serial.println("SIM Stuck sensor test");
lastTempBmeChangeMs = lastHumBmeChangeMs = lastGasResChangeMs = 0;
lastCo2T6713ChangeMs = 0;
break;
case 'R': // Manual restart
Serial.println("SIM Manual restart");
ESP.restart();
break;
}
}
// Factory reset on long button press
static uint8_t button = BOOT_PIN;
if (digitalRead(button) == LOW) { // push button pressed
delay(100); // debounce
int startTime = millis();
while (digitalRead(button) == LOW) {
delay(50);
if (millis() - startTime > 3000) {
Serial.println("Resetting Zigbee to factory and rebooting in 1s.");
delay(1000);
Zigbee.factoryReset();
ESP.restart();
}
}
}
vTaskDelay(pdMS_TO_TICKS(50));
}

View File

@ -0,0 +1,786 @@
#ifndef ZIGBEE_MODE_ED
#error "Zigbee end device mode is not selected in Tools->Zigbee mode"
#endif
#include "Zigbee.h"
#define LED_PIN 15
/* Zigbee occupancy sensor configuration */
#define OCCUPANCY_SENSOR_ENDPOINT_NUMBER 10
uint8_t button = BOOT_PIN;
uint8_t sensor_pin = 4;
ZigbeeOccupancySensor zbOccupancySensor = ZigbeeOccupancySensor(OCCUPANCY_SENSOR_ENDPOINT_NUMBER);
#include "DFRobot_C4001.h"
HardwareSerial RadarSerial(1);
DFRobot_C4001_UART radar(&RadarSerial, 9600, /*rx*/17, /*tx*/16); // ESP32-C6 pins
eMode_t currentMode = eExitMode; // 0=presence, 1=speed
unsigned long lastSpeedReport = 0;
bool lastOccupancy = false;
unsigned long occupancyStartTime = 0;
const unsigned long OCCUPANCY_TIMEOUT = 4; // 4 -> 2 seconds - adjust as needed
const unsigned long TRIGGER_DELAY = 10; // 10 -> 100 ms
// Define your custom SCL/SDA pins
#define I2C_SCL_PIN 20 // Change to your SCL pin
#define I2C_SDA_PIN 6 // Change to your SDA pin
// Create custom I2C instance
// TwoWire sharedI2C = TwoWire(0); // I2C0 (or TwoWire(1) for I2C1)
#define CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER 11
ZigbeeCarbonDioxideSensor zbCarbonDioxideSensor = ZigbeeCarbonDioxideSensor(CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER);
// #include <DFRobot_SCD4X.h>
// // DFRobot_SCD4X SCD4X(&Wire, /*i2cAddr = */SCD4X_I2C_ADDR);
// // SCD41 with custom I2C
// DFRobot_SCD4X SCD4X(&sharedI2C, SCD4X_I2C_ADDR);
#include <Arduino.h>
#include <SensirionI2cScd4x.h>
#include <Wire.h>
SensirionI2cScd4x scd41;
#define TEMP_SENSOR_ENDPOINT_NUMBER 12
ZigbeeTempSensor zbTempSensor_SCD4X = ZigbeeTempSensor(TEMP_SENSOR_ENDPOINT_NUMBER);
// --- BME680 Settings ---
#include <bme68xLibrary.h>
Bme68x bme;
// TwoWire BME68X_I2C = TwoWire(0); // I2C0 (or TwoWire(1) for I2C1)
// #include <DFRobot_BME680.h> // BME680 library
// DFRobot_BME680_I2C bme680(0x76); // 0x76
// #include <Adafruit_Sensor.h>
// #include "Adafruit_BME680.h"
// Adafruit_BME680 bme680;
unsigned long bme_report_time = millis();
#define TEMP_SENSOR_ENDPOINT_NUMBER 13
ZigbeeTempSensor zbTempSensor_BME68X = ZigbeeTempSensor(TEMP_SENSOR_ENDPOINT_NUMBER);
#define ANALOG_DEVICE_ENDPOINT_NUMBER 14
ZigbeeAnalog zbAnalogDevice_BME68X = ZigbeeAnalog(ANALOG_DEVICE_ENDPOINT_NUMBER);
// --- T6713 Settings ---
#define T6713_ADDR 0x15
// T6713 Register Addresses (Modbus)
#define T6713_REG_ABC_LOGIC 0x03EE
#define T6713_REG_STATUS 0x138A
unsigned long t6713_report_time = millis();
#define CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER_T6713 15
ZigbeeCarbonDioxideSensor zbCarbonDioxideSensor_T6713 = ZigbeeCarbonDioxideSensor(CARBON_DIOXIDE_SENSOR_ENDPOINT_NUMBER_T6713);
void setPresenceMode() {
radar.setSensorMode(eExitMode);
currentMode = eExitMode;
Serial.println("Switched to PRESENCE mode");
// Presence mode settings from sample
// radar.setDetectionRange(30, 1000, 1000); // min,max,trig (cm)
// radar.setTrigSensitivity(1);
// radar.setKeepSensitivity(2);
// radar.setDelay(100, 4); // trig,keep
sSensorStatus_t data;
data = radar.getStatus();
// 0 stop 1 start
Serial.print("work status = ");
Serial.println(data.workStatus);
// 0 is exist 1 speed
Serial.print("work mode = ");
Serial.println(data.workMode);
// 0 no init 1 init success
Serial.print("init status = ");
Serial.println(data.initStatus);
Serial.println();
/*
* min Detection range Minimum distance, unit cm, range 0.3~25m (30~2500), not exceeding max, otherwise the function is abnormal.
* max Detection range Maximum distance, unit cm, range 2.4~25m (240~2500)
* trig Detection range Maximum distance, unit cm, default trig = max
*/
if(radar.setDetectionRange(/*min*/30, /*max*/500, /*trig*/500)){
Serial.println("set detection range successfully!");
}
// set trigger sensitivity 0 - 9
if(radar.setTrigSensitivity(8)){
Serial.println("set trig sensitivity successfully!");
}
// set keep sensitivity 0 - 9
if(radar.setKeepSensitivity(8)){
Serial.println("set keep sensitivity successfully!");
}
/*
* trig Trigger delay, unit 0.01s, range 0~2s (0~200)
* keep Maintain the detection timeout, unit 0.5s, range 2~1500 seconds (4~3000)
*/
if(radar.setDelay(/*trig*/TRIGGER_DELAY, /*keep*/OCCUPANCY_TIMEOUT)){
Serial.println("set delay successfully!");
}
// get confige params
Serial.print("trig sensitivity = ");
Serial.println(radar.getTrigSensitivity());
Serial.print("keep sensitivity = ");
Serial.println(radar.getKeepSensitivity());
Serial.print("min range = ");
Serial.println(radar.getMinRange());
Serial.print("max range = ");
Serial.println(radar.getMaxRange());
Serial.print("trig range = ");
Serial.println(radar.getTrigRange());
Serial.print("keep time = ");
Serial.println(radar.getKeepTimerout());
Serial.print("trig delay = ");
Serial.println(radar.getTrigDelay());
}
void setSpeedMode() {
radar.setSensorMode(eSpeedMode);
currentMode = eSpeedMode;
Serial.println("Switched to SPEED mode");
// Speed mode settings from sample
// radar.setDetectThres(11, 1200, 10); // min,max,thres (cm)
// radar.setFrettingDetection(eON);
sSensorStatus_t data;
data = radar.getStatus();
// 0 stop 1 start
Serial.print("work status = ");
Serial.println(data.workStatus);
// 0 is exist 1 speed
Serial.print("work mode = ");
Serial.println(data.workMode);
// 0 no init 1 init success
Serial.print("init status = ");
Serial.println(data.initStatus);
Serial.println();
/*
* min Detection range Minimum distance, unit cm, range 0.3~20m (30~2500), not exceeding max, otherwise the function is abnormal.
* max Detection range Maximum distance, unit cm, range 2.4~20m (240~2500)
* thres Target detection threshold, dimensionless unit 0.1, range 0~6553.5 (0~65535)
*/
if (radar.setDetectThres(/*min*/ 11, /*max*/ 1200, /*thres*/ 10)) {
Serial.println("set detect threshold successfully");
}
// set Fretting Detection
radar.setFrettingDetection(eON);
// get confige params
Serial.print("min range = ");
Serial.println(radar.getTMinRange());
Serial.print("max range = ");
Serial.println(radar.getTMaxRange());
Serial.print("threshold range = ");
Serial.println(radar.getThresRange());
Serial.print("fretting detection = ");
Serial.println(radar.getFrettingDetection());
}
void handleSerialCommands() {
while (Serial.available()) {
char cmd = Serial.read();
if (cmd == 'P' || cmd == 'p') {
setPresenceMode();
} else if (cmd == 'S' || cmd == 's') {
setSpeedMode();
}
}
}
void setup() {
Serial.begin(115200);
pinMode(LED_PIN, OUTPUT);
bool ledState = false;
digitalWrite(LED_PIN, HIGH);
// while (!Serial);
// unsigned long start = millis();
// while (!Serial && millis() - start < 3000);
delay(100);
RadarSerial.begin(9600, SERIAL_8N1, 17, 16); // C4001 UART (RX=16, TX=17)
while (!radar.begin()) {
Serial.println("NO Device found!");
delay(1000);
}
Serial.println("C4001 connected!");
// Start in presence mode
setPresenceMode();
Serial.println("Send 'P' for presence, 'S' for speed mode");
// Optional: set Zigbee device name and model
zbOccupancySensor.setManufacturerAndModel("Espressif", "ZigbeeOccupancyPIRSensor_Node17");
zbOccupancySensor.setPowerSource(ZB_POWER_SOURCE_BATTERY, 100, 35);
// Add endpoint to Zigbee Core
Zigbee.addEndpoint(&zbOccupancySensor);
// Initialize custom I2C with YOUR pins
// SCD41_I2C.begin(SCD41_SDA_PIN, SCD41_SCL_PIN, 100000); // 100kHz standard
// Initialize SHARED I2C bus ONCE
// sharedI2C.begin(I2C_SDA_PIN, I2C_SCL_PIN, 100000);
Wire.begin(I2C_SDA_PIN, I2C_SCL_PIN);
scd41.begin(Wire, SCD41_I2C_ADDR_62);
// while( !SCD4X.begin() ){
// Serial.println("Communication with device failed, please check connection");
// delay(3000);
// }
scd41.stopPeriodicMeasurement();
Serial.println("SCD4x: Begin ok!");
scd41.startPeriodicMeasurement();
// SCD4X.setTempComp(4.0);
// float temp = 0;
// temp = SCD4X.getTempComp();
// Serial.print("The current temperature compensation value : ");
// Serial.print(temp);
// Serial.println(" C");
// SCD4X.setSensorAltitude(540);
// uint16_t altitude = 0;
// altitude = SCD4X.getSensorAltitude();
// Serial.print("Set the current environment altitude : ");
// Serial.print(altitude);
// Serial.println(" m");
// SCD4X.enablePeriodMeasure(SCD4X_START_PERIODIC_MEASURE);
zbCarbonDioxideSensor.setManufacturerAndModel("Espressif", "ZigbeeOccupancyPIRSensor_Node17");
// Set minimum and maximum carbon dioxide measurement value in ppm
zbCarbonDioxideSensor.setMinMaxValue(0, 1500);
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbCarbonDioxideSensor);
// Set minimum and maximum temperature measurement value (10-50°C is default range for chip temperature measurement)
zbTempSensor_SCD4X.setMinMaxValue(10, 50);
// Optional: Set tolerance for temperature measurement in °C (lowest possible value is 0.01°C)
zbTempSensor_SCD4X.setTolerance(1);
// Optional: Time cluster configuration (default params, as this device will revieve time from coordinator)
// zbTempSensor.addTimeCluster();
// Add humidity cluster to the temperature sensor device with min, max and tolerance values
zbTempSensor_SCD4X.addHumiditySensor(0, 100, 1);
// Add endpoint to Zigbee Core
Zigbee.addEndpoint(&zbTempSensor_SCD4X);
Serial.println("Connecting to BME680...");
// // Init BME680
// if (bme680.begin(sharedI2C) != 0) {
// Serial.println("BME680 init failed!");
// } else {
// Serial.println("BME680 ready!");
// }
// Wire.begin(SCD41_SDA_PIN, SCD41_SCL_PIN);
// Wire.setClock(100000); // Set I2C clock speed to 100kHz
// // Initialize the BME680
// bme.begin(BME68X_I2C_ADDR_HIGH, Wire); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
// bme.begin(BME68X_I2C_ADDR_HIGH, &BME68X_I2C); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
// bme680.begin()
// // Set up the BME680
// // bme.setGasStatus(BME680_ENABLE_GAS_MEAS);
// // bme.setOversampling(T2, OS_2X);
// // bme.setOversampling(T1, OS_16X);
// // bme.setOversampling(H1, OS_2X);
// // bme.setFilter(FILTER_SIZE_3);
// // bme.setGasSettings(320, 25, 0x4, 130, 410, 4, 0x01, 0x10, 0);
// if(bme.checkStatus())
// {
// if (bme.checkStatus() == BME68X_ERROR)
// {
// Serial.println("Sensor error:" + bme.statusString());
// return;
// }
// else if (bme.checkStatus() == BME68X_WARNING)
// {
// Serial.println("Sensor Warning:" + bme.statusString());
// }
// }
// /* Set the default configuration for temperature, pressure and humidity */
// bme.setTPH();
// /* Set the heater configuration to 300 deg C for 100ms for Forced mode */
// bme.setHeaterProf(300, 100);
// bme68xData data;
// bme.setOpMode(BME68X_FORCED_MODE);
// Note the syntax: .begin(Address, TwoWirePointer)
// if (!bme680.begin(0x77, &sharedI2C)) {
// Serial.println("BME680 not found at 0x77, trying 0x76...");
// if (!bme680.begin(0x76, &sharedI2C)) {
// Serial.println("BME680 Init Failed! Check wiring.");
// while (1);
// }
// }
// Serial.println("BME680 initialized via TwoWire.");
// // BME680 Settings
// bme680.setTemperatureOversampling(BME680_OS_8X);
// bme680.setHumidityOversampling(BME680_OS_2X);
// bme680.setPressureOversampling(BME680_OS_4X);
// bme680.setIIRFilterSize(BME680_FILTER_SIZE_3);
// bme680.setGasHeater(320, 150);
bme.begin(BME68X_I2C_ADDR_HIGH, Wire); // BME68X_I2C_ADDR_HIGH=0x76, BME68X_I2C_ADDR_LOW=0x77
/* Set the default configuration for temperature, pressure and humidity */
// setTPH(uint8_t os_temp, uint8_t os_pres, uint8_t os_hum); BME68X_OS_NONE, BME68X_OS_1X, BME68X_OS_2X, BME68X_OS_4X, BME68X_OS_8X, BME68X_OS_16X
bme.setTPH(BME68X_OS_8X, BME68X_OS_2X, BME68X_OS_8X);
/* Set the heater configuration to 300 deg C for 100ms for Forced mode */
bme.setHeaterProf(300, 100);
bme68xData data;
bme.setOpMode(BME68X_FORCED_MODE);
zbTempSensor_BME68X.setMinMaxValue(-20, 80);
zbTempSensor_BME68X.setTolerance(1);
zbTempSensor_BME68X.addHumiditySensor(0, 100, 1);
Zigbee.addEndpoint(&zbTempSensor_BME68X);
// Set analog resolution to 10 bits
// analogReadResolution(10);
// Add analog clusters to Zigbee Analog according your needs
zbAnalogDevice_BME68X.addAnalogInput();
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbAnalogDevice_BME68X);
// TRUE = Normal Home/Office use
// FALSE = Greenhouse / Constantly occupied
configureT6713(true);
// Set minimum and maximum carbon dioxide measurement value in ppm
zbCarbonDioxideSensor_T6713.setMinMaxValue(0, 1500);
// Add endpoints to Zigbee Core
Zigbee.addEndpoint(&zbCarbonDioxideSensor_T6713);
Serial.println("Starting Zigbee...");
// When all EPs are registered, start Zigbee in End Device mode
esp_zb_cfg_t zigbeeConfig = ZIGBEE_DEFAULT_ED_CONFIG();
// Increase keep-alive to 5 seconds (default is often 3000ms)
zigbeeConfig.nwk_cfg.zed_cfg.keep_alive = 5000;
// zigbeeConfig.nwk_cfg.zed_cfg.ed_timeout = ESP_ZB_ED_AGING_TIMEOUT_256MIN; // 4 hours; How long the parent remembers this device.
// 1. Our custom config (zigbeeConfig)
// 2. false = Do NOT erase NVS (keep network credentials)
// 3. true = Start automatically (optional, defaults to true)
if (!Zigbee.begin(&zigbeeConfig, false)) {
Serial.println("Zigbee failed to start!");
Serial.println("Rebooting...");
ESP.restart();
} else {
Serial.println("Zigbee started successfully!");
}
Serial.println("Connecting to network");
// while (!Zigbee.connected()) {
// Serial.print(".");
// delay(100);
// }
// Record the start time
unsigned long startTime = millis();
const unsigned long timeoutMs = 60000; // 120 seconds
while (!Zigbee.connected()) {
Serial.print(".");
ledState = !ledState;
digitalWrite(LED_PIN, ledState);
delay(100);
// Check if 120 seconds have passed
if (millis() - startTime > timeoutMs) {
Serial.println("\nConnection timed out (120s). Restarting...");
ESP.restart();
}
}
digitalWrite(LED_PIN, LOW);
Serial.println("\nZigbee connected!");
Serial.println();
// Set reporting interval for carbon dioxide measurement to be done every 30 seconds, must be called after Zigbee.begin()
// min_interval and max_interval in seconds, delta (carbon dioxide change in ppm)
// if min = 1 and max = 0, reporting is sent only when carbon dioxide changes by delta
// if min = 0 and max = 10, reporting is sent every 10 seconds or when carbon dioxide changes by delta
// if min = 0, max = 10 and delta = 0, reporting is sent every 10 seconds regardless of delta change
zbCarbonDioxideSensor.setReporting(0, 30, 0);
zbTempSensor_SCD4X.setReporting(1, 0, 1);
zbTempSensor_BME68X.setReporting(1, 0, 1);
// zbAnalogDevice.setAnalogInputReporting(0, 30, 10); // report every 30 seconds if value changes by 10
}
void loop() {
// handleSerialCommands();
// // Remove if (radar.available()) - just read directly
// sSensorStatus_t status = radar.getStatus(); // Always safe to call
// Serial.print("Status: work=");
// Serial.print(status.workStatus);
// Serial.print(", mode=");
// Serial.print(status.workMode);
// Serial.print(", init=");
// Serial.println(status.initStatus);
if (currentMode == eExitMode) {
// PRESENCE MODE
// static bool occupancy = false;
// bool occupancyNow = radar.motionDetection();
// Serial.println(occupancyNow);
// // if (radar.motionDetection() == 1 && !occupancy) {
// if (occupancyNow != lastOccupancy) {
// Serial.println("MOTION DETECTED");
// zbOccupancySensor.setOccupancy(occupancyNow);
// zbOccupancySensor.report();
// // occupancy = true;
// lastOccupancy = occupancyNow;
// // } else if (radar.motionDetection() == 0 && occupancy) {
// // } else if (radar.motionDetection() == 0) {
// // Serial.println("MOTION ENDED");
// // zbOccupancySensor.setOccupancy(false);
// // zbOccupancySensor.report();
// // occupancy = false;
// }
// PRESENCE MODE - proper state machine
bool motionNow = radar.motionDetection();
// Serial.println(motionNow);
// Serial.println(lastOccupancy);
// Serial.println(millis() - occupancyStartTime);
if (motionNow && !lastOccupancy) {
// Motion STARTED → Set occupancy ON
Serial.println("MOTION DETECTED → OCCUPANCY ON");
lastOccupancy = true;
occupancyStartTime = millis();
zbOccupancySensor.setOccupancy(true);
zbOccupancySensor.report();
} else if (motionNow && lastOccupancy) {
// Motion ENDED → Start timeout timer
// Serial.println("Motion still present → timeout reset");
occupancyStartTime = millis();
} else if (!motionNow && lastOccupancy && (millis() - occupancyStartTime > OCCUPANCY_TIMEOUT*1000/2)) {
// TIMEOUT → Clear occupancy
Serial.println("OCCUPANCY TIMEOUT → OFF");
lastOccupancy = false;
zbOccupancySensor.setOccupancy(false);
zbOccupancySensor.report();
} else if (!motionNow && lastOccupancy) {
// Motion ENDED → Start timeout timer
// Serial.println("Motion ended → timeout started");
// occupancyStartTime = millis();
}
} else if (currentMode == eSpeedMode) {
// SPEED MODE
Serial.print("Targets: ");
Serial.print(radar.getTargetNumber());
Serial.print(" | Speed: ");
Serial.print(radar.getTargetSpeed(), 2);
Serial.print(" m/s | Range: ");
Serial.print(radar.getTargetRange(), 2);
Serial.print(" m | Energy: ");
Serial.println(radar.getTargetEnergy());
}
// --- Read SCD41 ---
uint16_t co2_scd = 0;
float temperature_scd = 0.0f;
float humidity_scd = 0.0f;
bool scdReady = false;
uint16_t error = scd41.readMeasurement(co2_scd, temperature_scd, humidity_scd);
if (error == 0 && co2_scd != 0) {
scdReady = true;
}
if (scdReady) {
Serial.print("[SCD41] CO2: "); Serial.print(co2_scd); Serial.print(" ppm");
Serial.print(" | Temp: "); Serial.print(temperature_scd); Serial.print(" C");
Serial.print(" | Hum: "); Serial.print(humidity_scd); Serial.println(" %");
zbCarbonDioxideSensor.setCarbonDioxide(co2_scd);
zbCarbonDioxideSensor.report();
// Update temperature and humidity values in Temperature sensor EP
zbTempSensor_SCD4X.setTemperature(temperature_scd);
zbTempSensor_SCD4X.setHumidity(humidity_scd);
// Report temperature and humidity values
zbTempSensor_SCD4X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
// Serial.printf("Reported temperature: %.2f°C, Humidity: %.2f%%\r\n", temperature, humidity);
// Serial.print("SCD41 reported.");
}
// else {
// Serial.println("[SCD41] Waiting for measurement...");
// }
// if(SCD4X.getDataReadyStatus()) {
// DFRobot_SCD4X::sSensorMeasurement_t data;
// SCD4X.readMeasurement(&data);
// Serial.print("Carbon dioxide concentration : ");
// Serial.print(data.CO2ppm);
// Serial.println(" ppm");
// Serial.print("Environment temperature : ");
// Serial.print(data.temp);
// Serial.println(" C");
// Serial.print("Relative humidity : ");
// Serial.print(data.humidity);
// Serial.println(" RH");
// Serial.println();
// zbCarbonDioxideSensor.setCarbonDioxide(data.CO2ppm);
// zbCarbonDioxideSensor.report();
// // Update temperature and humidity values in Temperature sensor EP
// zbTempSensor_SCD4X.setTemperature(data.temp);
// zbTempSensor_SCD4X.setHumidity(data.humidity);
// // Report temperature and humidity values
// zbTempSensor_SCD4X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
// // Serial.printf("Reported temperature: %.2f°C, Humidity: %.2f%%\r\n", temperature, humidity);
// Serial.print("SCD41 reported.");
// }
// Serial.println("---------------------------");
float bme_temperature(NAN), bme_humidity(NAN), bme_pressure(NAN), bme_gasResistance(NAN);
bme68xData data;
bme.setOpMode(BME68X_FORCED_MODE);
delayMicroseconds(bme.getMeasDur());
// delay(bme.getMeasDur(BME68X_FORCED_MODE) / 1000 + 50);
if (bme.fetchData() && (millis() - bme_report_time > 5000)) {
bme.getData(data);
bme_temperature = data.temperature; // Temperature in °C
bme_humidity = data.humidity; // Humidity in %
bme_pressure = data.pressure; // Pressure in hPa
bme_gasResistance = data.gas_resistance; // Gas resistance in ohms
// errorCount = 0; // Reset error count on successful read
Serial.printf("[BME680] temperature: %.2f°C, Humidity: %.2f%%, Gas Resistance: %.2f ohms\r\n", bme_temperature, bme_humidity, bme_gasResistance);
zbTempSensor_BME68X.setTemperature(bme_temperature);
zbTempSensor_BME68X.setHumidity(bme_humidity);
// Report temperature and humidity values
zbTempSensor_BME68X.report(); // reports temperature and humidity values (if humidity sensor is not added, only temperature is reported)
zbAnalogDevice_BME68X.setAnalogInput(bme_gasResistance);
zbAnalogDevice_BME68X.reportAnalogInput();
digitalWrite(LED_PIN, HIGH);
delay(50);
digitalWrite(LED_PIN, LOW);
// Serial.print("BME68X reported.");
bme_report_time = millis();
}
// else {
// Serial.println("BME680 -> Waiting...");
// }
// --- Read T6713 (CO2) ---
int co2_t6713 = readT6713();
if ((co2_t6713 >= 0) && (millis() - t6713_report_time > 5000)) {
Serial.print("T6713 | CO2: "); Serial.print(co2_t6713); Serial.println(" ppm");
zbCarbonDioxideSensor_T6713.setCarbonDioxide(co2_t6713);
zbCarbonDioxideSensor_T6713.report();
t6713_report_time = millis();
}
// else {
// Serial.println("T6713 | Read Error");
// }
delay(100);
}
// Helper function for T6713
int readT6713() {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04); // Function: Read Input Registers
Wire.write(0x13); // Address High
Wire.write(0x8B); // Address Low
Wire.write(0x00);
Wire.write(0x01); // Length (1 register)
if (Wire.endTransmission() != 0) return -1;
delay(10); // Processing delay
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() == 4) {
Wire.read(); Wire.read(); // Skip Func & Len
byte high = Wire.read();
byte low = Wire.read();
return (high << 8) | low;
}
return -1;
}
void configureT6713(bool enableABC) {
// 1. Wait for Sensor Warm-up (at least 500ms after power on, datasheet says much longer for accuracy)
delay(1000);
// 2. Check Status Register (Optional but good practice)
// We read register 0x138A (5002) to check for errors/warmup
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04);
Wire.write(0x13); Wire.write(0x8A); // Address 0x138A
Wire.write(0x00); Wire.write(0x01);
Wire.endTransmission();
delay(10);
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() == 4) {
Wire.read(); Wire.read(); // Func, Len
uint16_t status = (Wire.read() << 8) | Wire.read();
// Bit 3 is Warm-up mode. If 1, sensor is still warming up.
if (status & 0x08) {
Serial.println("T6713: Warming up...");
}
}
// 3. Configure ABC Logic (Automatic Background Calibration)
// Write to Register 0x03EE (1006). Value: 0xFF00 = Enable, 0x0000 = Disable
uint16_t abcValue = enableABC ? 0xFF00 : 0x0000;
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x05); // Function: Write Single Coil
Wire.write(highByte(T6713_REG_ABC_LOGIC));
Wire.write(lowByte(T6713_REG_ABC_LOGIC));
Wire.write(highByte(abcValue));
Wire.write(lowByte(abcValue));
byte error = Wire.endTransmission();
if (error == 0) {
Serial.print("T6713: ABC Logic set to ");
Serial.println(enableABC ? "ON" : "OFF");
} else {
Serial.println("T6713: Failed to set ABC Logic");
}
// 4. Wait for the write to "stick"
delay(100);
}

View File

@ -0,0 +1,96 @@
#include <Wire.h>
// Default I2C Address for T6713 is 0x15 (decimal 21)
#define T6713_ADDR 0x15
#define I2C_SCL_PIN 20 // Change to your SCL pin
#define I2C_SDA_PIN 6 // Change to your SDA pin
#include <bme68xLibrary.h>
#ifndef BME68X_I2C_ADDR
#define BME68X_I2C_ADDR 0x76 // Change to 0x77 if sensor not found
#endif
Bme68x bme;
void setup() {
Serial.begin(115200);
Wire.begin(I2C_SDA_PIN, I2C_SCL_PIN); // Join I2C bus
Serial.println("Initializing Sensors...");
// 1. Initialize BME680
bme.begin(BME68X_I2C_ADDR, Wire);
if(bme.checkStatus()) {
Serial.println("BME680 Error: " + bme.statusString());
if (bme.checkStatus() == BME68X_ERROR) {
Serial.println("Check wiring or I2C address (0x76 vs 0x77)");
while(1); // Halt if BME fails
}
}
Serial.println("BME680 Found!");
// Configure BME680 for "Forced Mode" (On-Demand)
bme.setTPH(); // Set default oversampling for Temp, Pres, Hum
// Configure Heater for Gas Measurement (300°C for 100ms)
bme.setHeaterProf(300, 100);
Serial.println("Sensors Ready. Starting Loop...");
delay(2000); // Let sensor warm up
}
void loop() {
Serial.println("-----------------------------");
// --- Read T6713 (CO2) ---
int co2 = readT6713();
if (co2 >= 0) {
Serial.print("T6713 | CO2: "); Serial.print(co2); Serial.println(" ppm");
} else {
Serial.println("T6713 | Read Error");
}
// --- Read BME680 (Temp, Hum, Pres, Gas) ---
bme68xData data;
bme.setOpMode(BME68X_FORCED_MODE); // Trigger measurement
// Wait for measurement to complete (depends on heater duration)
delay(bme.getMeasDur(BME68X_FORCED_MODE) / 1000 + 50);
if (bme.fetchData()) {
bme.getData(data);
Serial.print("BME680 | Temp: "); Serial.print(data.temperature); Serial.println(" C");
Serial.print("BME680 | Hum: "); Serial.print(data.humidity); Serial.println(" %");
Serial.print("BME680 | Pres: "); Serial.print(data.pressure / 100.0); Serial.println(" hPa");
Serial.print("BME680 | Gas: "); Serial.print(data.gas_resistance / 1000.0); Serial.println(" kOhm");
} else {
Serial.println("BME680 | Failed to fetch data");
}
// Wait 5 seconds before next cycle
delay(5000);
}
// Helper function for T6713
int readT6713() {
Wire.beginTransmission(T6713_ADDR);
Wire.write(0x04); // Function: Read Input Registers
Wire.write(0x13); // Address High
Wire.write(0x8B); // Address Low
Wire.write(0x00);
Wire.write(0x01); // Length (1 register)
if (Wire.endTransmission() != 0) return -1;
delay(10); // Processing delay
Wire.requestFrom(T6713_ADDR, 4);
if (Wire.available() == 4) {
Wire.read(); Wire.read(); // Skip Func & Len
byte high = Wire.read();
byte low = Wire.read();
return (high << 8) | low;
}
return -1;
}